The Transactions of the Korea Information Processing Society
/
v.5
no.9
/
pp.2447-2456
/
1998
Edge detection in the presence of noise is a well-known problem. this pper atempts to implement edge detection algorithms using fuzzy reasoning of fuzzy membership models. It examines an application-motived approach for solving the problem. Our approach is divided into three stages; fitering, segmentation and tracing. Filtering removes the noise from the original image and segmentation determines the edges and deects them. Finally, tracing assembles the edges into the related structure. Proposed method can be used effectively on these procedures by using fuzzy reasoning based on fuzzy models. In is compared with the previous edge detectio algorithms with fvorable results. Simulation results of the research are presented and discussed.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.3
/
pp.506-512
/
2003
The edge detection has been so far under a lot of studies on its methods, as a very important part of image recognition. Never the less the correct detection of the edge has been yet a difficult problem because of the various scopes of detection according to the applied field. One of those problems to be solved is the edge detection in images with noise. This paper presents an efficient method which removes noise and detect edge in the same framework based on fuzzy logic. The method consists of two steps. First, an efficient filtering is applied to eliminate the noise from original image. The filtering is performed by utilizing fuzzy MIN-MAX operator in three directions such as vertical, horizontal and diagonal angle of 3${\times}$3 mask. Second, edges are detected by using extended fuzzy Shanon Function.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.9
/
pp.1925-1931
/
2011
This paper suggests an approach to the subtle concept, "good", through the fuzzy logic and the design of the Canny edge detector of Gray scale images based on the rules of fuzzy anisotropic diffusion. The Canny edge detection algorithms design is to divide the gray levels into pixels and then calculate the diffusion coefficients at each pixel of non-edgy regions. Based on this processing, we present the Canny edge detector implementing fuzzy logic and comparing the results to other existing methods. The proposed approach is the narrow dynamic range of the gray-level image Sharpening the edge detection and has the advantage.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.3
/
pp.252-259
/
2000
In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection of a image. The FCS is based on the fuzzy logic system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. There are two different approaches, Michigan and Pittsburgh approaches, to acquire appropriate fuzzy rules by evolutionary computation. In this paper, we use the Michigan style in which a single fuzzy if-then rule is coded as an individual. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. The proposed method is evaluated by applying it to the edge detection of a gray-level image that is a pre-processing step of the computer vision. the differences of average gray-level of the each vertical/horizontal arrays of neighborhood pixels are represented into fuzzy sets, and then the center pixel is decided whether it is edge pixel or not using fuzzy if-then rules. We compare the resulting image with a conventional edge image obtained by the other edge detection method such as Sobel edge detection.
Journal of the Korea Society of Computer and Information
/
v.12
no.2
s.46
/
pp.53-62
/
2007
In this paper, it can propose that Fuzzy Wavelet Morphology Neural Networks for the edge detection algorithm with being robustly a unclear boundary parts by brightness difference and being less sensitivity on direction to be detected the edges of images. This is applying the Fuzzy Wavelet Morphology Operator which can be simple the image robustly without the loss of data to DTCNN Structure for improving defect which carrys out a lot of operation complexly. Also, this color image can segment Y image with YCbCr space color model which has a lossless feature information of edge boundary sides effectively. This paper can offer the simulation of color images of 50ea for the performance verification of the proposal algorithm.
Proceedings of the Korea Inteligent Information System Society Conference
/
2004.11a
/
pp.195-202
/
2004
일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.473-476
/
2015
본 논문에서는 영상의 명암도 분포도를 효과적으로 조정하기 위해 개선된 퍼지 스트레칭 기법을 제안하여 적용한다. 개선된 퍼지 스트레칭이 적용된 영상에서 소벨 마스크를 이용하여 에지를 추출한다. 추출된 에지영상에 퍼지 추론 기법을 적용하여 흠집 크기에 대한 소속도와 중심과 흠집간의 거리에 대한 소속도를 구한 후에 퍼지 추론 기법을 적용하여 흠집이 눈에 미치는 영향 정도를 분석한다. 본 논문에서 제안된 방법의 성능을 평가하기 위해 CHEMI, MID, HL, HM와 같은 시력 보정용 렌즈 영상을 대상으로 실험한 결과, 제안된 방법이 기존 렌즈 흠집 추출 방법보다 흠집 영역이 정확히 추출되고 눈에 미치는 영향을 효과적으로 분석할 수 있는 가능성을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.10a
/
pp.179-182
/
2010
본 논문에서는 영상으로부터 손금을 추출하기 위해서 획득된 영상을 YCbCr 컬러 공간으로 변환한다. YCbCr 컬러 공간에서 Y:65~255, Cb:25~255, Cr:130~255에 해당되는 피부색 정보를 추출하고 이 피부색 정보를 임계치로 설정하여 손 영역을 추출한다. 추출된 손 영역에서 내부 픽셀의 3:1 이상, 전체 영상의 2:1 이상인 손의 형태학적 정보와 8 방향 윤곽선 추적 기법을 이용하여 잡음을 제거한다. 잡음이 제거된 영상에서 손금을 추출하기 위해서 스트레칭 기법과 소벨 마스크를 이용하여 에지를 추출한다. 추출된 에지 영상에서도 미세한 잡음이 존재하므로 퍼지 이진화 기법을 이용하여 효과적으로 이진화 한다. 이진화된 영상에서 손금의 형태학적 정보를 이용하여 손의 윤곽선을 제외한 손금 영역을 추출한다. 추출된 손금 영역은 동치 테이블을 이용하는 연결 영역 검색 기법과 퍼지 추론 기법을 적용하여 개별 손금의 중요선을 추출하고 분석한다. 다양한 손금 영상을 대상으로 실험한 결과, 제안된 방법이 기존의 손금 추출 방법보다 손금을 분석하는데 효율적인 것을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.1
/
pp.497-503
/
2005
본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.850-852
/
2005
차량을 포함하는 임의의 영상에서 번호판 추출은 다양한 조명조건 및 배경, 촬영 각도, 번호판 종류 등의 요인으로 인해 고도의 영상처리 과정을 필요로 한다. 본 논문에서는 실제 환경에서 발생할 수 있는 이러한 요인들에 대해 강건한 번호판 추출 방법을 제안한다. 제안하는 방법은 입력영상의 RGB 성분들을 색상성분과 영암성분으로 분리할 수 있는 칼라모델 HSI로 변환하고 H(hue)와 S(saturation)성분을 이용하여 번호판의 배경색상을 고려한 칼라 퍼지지도를 구성한다. 또한, I(intensity)성분을 이용하여 에지밀도를 추출하고 에지밀도 지도에 기반한 영역분리 퍼지지도를 생성한다. 마지막으로, 후보영역 탐색을 위해 칼라 퍼지지도와 영역분리 퍼지지도를 결합하고, 연결성분 해석(Connected Component Analysis)을 통해 ROI(Region Of Interest)를 추출한다. 제안하는 방법의 유효성 검증을 위해 조명 및 촬영 각도에 제한을 거의 두지 않고 촬영된 차량 영상 410장을 실험 영상으로 사용하였다. 실험 결과에서는 $97.1\%$의 효과적인 추출 성공률을 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.