• 제목/요약/키워드: 퍼지 신경회로망

검색결과 213건 처리시간 0.023초

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • 김용수
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes)

  • 김용수;백용선;이세열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.800-804
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

인공 지능을 이용한 자율주행차량의 제어

  • 류영재;홍재영;임영철
    • 전기의세계
    • /
    • 제46권3호
    • /
    • pp.20-25
    • /
    • 1997
  • 자율주행시스템은 복잡한 환경에서 효과적인 주행을 위해서 센서를 통해 주변의 정보를 수집하고 주변환경에 적절한 동작을 취해야 한다. 이러한 자율주행시스템에 지능적인 방법을 통하여 새롭게 제안한 방법을 서술하였다. 퍼지 논리를 이용하여 운전자와 같이 차량이 차선을 따라 주행하기 위한 퍼지 논리 제어기(FLC)가 설계되었다. 함축적인 차량모델을 기반으로 설계한 퍼지 논리 제어기가 복잡하고 정확한 차량모델을 기반으로 설계된 PID나 FSLQ 제어기와 동등한 성능을 발휘하였다. 인간의 운전방법을 학습할 수 있는 신경회로망을 이용하여 자율주행시스템에 적용하였다. 퍼지 신경회로망은 인간의 제어특성을 반영하도록 설계되었으며 자동으로 생성된 제어기는 퍼지 논리 제어나 신경회로망의 기법보다 우수한 성능을 발휘하였다. 퍼지 논리, 신경회로망, 유전자 알고리즘 등의 인간의 지능 모델에 기초를 둔 방법을 자율주행차량의 제어에 도입하므로써 기존의 자율주행시스템의 문제점을 극복하는데 주요한 역할을 하였다. 앞으로 퍼지 논리, 신경회로망, 유전자 알고리즘은 각각의 강점을 융합하거나, 고전적인 제어 알고리즘과 결합하므로써 더욱 우수한 성능을 발휘할 것으로 예상된다.

  • PDF

퍼지 신경회로망을 이용한 칼라 물체 추출 (Colored Object Extraction using Fuzzy Neural Network)

  • 김용수;정승원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.197-202
    • /
    • 2006
  • 본 논문에서는 퍼지 신경회로망을 사용하여 영상에서 물체를 배경으로부터 추출해내는 방법을 제시하였다. 퍼지 신경회로망의 vigilance parameter를 조정하여 영상을 2개의 클래스로 분류하고, 물체 영역과 배경영역의 Cb와 Cr의 대표값을 추출하였다. 제안한 방법을 사용하여 물체색상의 위치 및 크기와 밝기에 상관없이 물체영역을 추출하였다.

  • PDF

데이터와 클러스터들의 대표값들 사이의 거리를 이용한 퍼지 학습법칙 (Fuzzy Learning Rule Using the Distance between Datum and the Centroids of Clusters)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.301-304
    • /
    • 2007
  • 학습법칙은 신경회로망의 성능에 중요한 영향을 미친다. 본 논문은 데이터와 클러스터들의 대표값들 사이의 거리를 고려하여 학습률을 정하는 새로운 퍼지 학습법칙을 제안한다. 클러스터들의 대표값을 조정할 때, 이러한 고려는 outlier에 비하여 결정경계선 근처에 있는 데이터의 반영도를 높임으로써 outlier의 클러스터의 대표값에 미치는 영향도를 낮출 수 있다. 따라서 outlier들이 결정경계선을 악화시키는 것을 방지할 수 있다. 이 새로운 퍼지 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 제안한 퍼지 신경회로망과 다른 감독 신경회로망들의 성능을 비교하기 위하여 iris 데이터를 사용하였다. iris 데이터를 사용하여 테스트한 결과 제안한 퍼지 신경회로망의 성능이 우수함을 보였다.

  • PDF

Underutilization 문제를 해결한 퍼지 신경회로망 모델 (A Fuzzy Neural Network Model Solving the Underutilization Problem)

  • 김용수;함창현;백용선
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.354-358
    • /
    • 2001
  • 본 논문에서는 underutilization 문제를 해결한 퍼지 신경회로망 모델을 제시한다. 이 퍼지 신경 회로망은 ART-1 신경회로망과 유사한 제어 구조를 가지고 있어 유연성이 있으면서도 안정성이 있다. 또한 연결강도의 초기화가 필요 없고 ART-1 신경회로망에 비하여 잡음에 민감하지 않다. 이 퍼지 신경회로망의 학습법칙은 코호넨의 학습법칙을 변형하고 퍼지화 하였으며 누설 경쟁학습의 퍼지화와 조건 확률의 퍼지화에 기반을 두고 있다. 출력 뉴런 중에서 승자를 정한 후에 행해지는 점검 테스트에서는 유사척도로 상대적 거리를 사용하였다. 이 상대적 거리는 유클리디안 거리와 함께 데이터와 클러스터들의 대푯값들 간의 상대적인 위치를 고려한 것이다. 본 논문에서 제안한 퍼지 신경회로망과 코호넨 자기 조직화 특징 지도의 성능을 비교하기 위하여 널리 사용되어온 IRIS 데이터와 가우시안 분포 데이터를 사용하였다.

  • PDF

시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선 (Performance Improvement of Controller using Fuzzy Inference Results of System Output)

  • 이우영;최홍문
    • 한국지능시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.77-86
    • /
    • 1995
  • 퍼지 제어기에 신경회로망을 병렬로 연결시키므로 제어성능 향상을 위해 필요했던 소속함수의 미세조정 과정이 학습으로 대신되게 하는 제어기 구조를 제안하였다. 신경회로망의 학습은 오차 역전파 알고리듬에 의해 수행되고 퍼지 제어기의 출력이 학습에 사용되는 오차량으로 사용된다. 따라서 본 제어기는 전문가의 경험과 지식을 제어기 설계에 이용할 수 있고, 별도의 학습과정 없이 제어과정 중에서 신경회로망 제어기가 학습되어 초기의 제어특성이 개선되어지는 특성이 있다. 그리고 본 구성에서 퍼지 제어기는 사용된 규칙에 의해 형성되는 위상평면상의 슬라이딩 면으로 필요한 제어특성과 신경회로망의 학습기준을 제시하는 한편 신경회로망이 학습되기전 제어 시스템의 제어특성이 안정되도록 하며, 신경회로망은 시스템의 상태궤적이 퍼지제어기에 의해 형성된 슬라이딩 면을 가능한한 근사하게 추종하도록 학습되어져 위상평면상 임의의 위치에 있는 시스템의 상태가 슬라이딩 면을 따라 안정점에 도달하도록 하게한다.

  • PDF

선택적 학습률을 활용한 학습법칙을 사용한 신경회로망 (Fuzzy Neural Network Using a Learning Rule utilizing Selective Learning Rate)

  • 백용선;김용수
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.672-676
    • /
    • 2010
  • 본 논문은 연결강도를 조정할 때 결정 경계선 근처에 있는 데이터를 더 반영하는 학습법칙을 제안하였다. 이 학습법칙은 outlier가 결정 경계선에 미치는 영향을 줄여 더 나은 결정 경계선을 형성하도록 한다. 제안하는 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망의 구조에 적용하였다. IAFC 신경회로망은 배운 것을 유지하는 안정성이 있으면서, 새로운 것을 배울 수 있는 안정성이 있다. 이 퍼지 신경회로망의 성능과 LVQ(Learning Vector Quantization) 신경회로망 및 오류역전파 신경회로망의 성능과 비교하였다. 실험결과 제안하는 퍼지 신경회로망의 성능이 우수함을 보여주었다.