• Title/Summary/Keyword: 퍼지 시스템

Search Result 3,523, Processing Time 0.03 seconds

Design of GA-based Fuzzy Polynomial Neural Networks Architecture (유전자 기반 퍼지다항식 뉴럴네트워크 구조의 설계)

  • 박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.442-445
    • /
    • 2004
  • 본 논문은 유전자 기반 퍼지다항식 뉴럴네트워크(Genetic based fuzzy polynomial neural networks: gFPNN)를 제안한다. gFPNN 구조는 퍼지집합을 기반으로 설계되며, 유전자 알고리즘에 의해 구조 및 파라미터를 최적화한 구조이다. 퍼지집합을 기반으로 설계되어진 퍼지뉴럴네트워크는 간략추론 구조와 선형추론 구조로 설계된다. 본 논문에서는 간략추론 및 선형추론 구조를 통합 및 확장한 퍼지다항식 뉴럴네트워크를 설계한다. 이 구조는 연결가중치를 이용하여 회귀다항식을 네트워크 구조로 표현하며, 간략추론(Type 0), 선형추론(Type 1), 회귀다항식추론(Type 2)을 모두 포함한다. 또한 퍼지규칙 후반부의 다항식 차수를 각 규칙에 대해 다르게 선택할 수 있으며, 일률적인 형식의 구조를 벗어나 주어진 시스템의 특성에 따라 유연한 구조를 설계할 수 있도록 한다. 여기에 더하여, 네트워크 구조와 파라미터 동조에 유전자 알고리즘을 적용하며, 구조와 파라미터 동정에 대한 효율적인 방법을 논의한다. 제안된 모델의 평가를 위해 수치예제를 이용한다.

  • PDF

Fuzzy-Neural Network Modeling of Nonlinear Systems using Genetic Algorithms (유전자 알고리즘을 이용한 비선형 시스템의 퍼지-신경 회로망 모델링)

  • 이승형;최용준;김주웅;김한웅;김경수;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.202-207
    • /
    • 1998
  • 본 논문에서는 유전자 알고리즘을 이용하여 불확실한 비선형 시스템의 퍼지-신경 회로망 모델링을 제안하였다. 제안한 퍼지-신경 회로망 모델링을 위한 학습 알고리즘은 다음과 같은 세 단계로 나누어 진행한다. 첫 번째 단계에서는 퍼지 모델의 소속 함수의 중심간과 표준편차를 구하여 초기 퍼지소속 함수를 결정한다. 두 번째 단계에서는 새로운 알고리즘을 통하여 언어적 퍼지 규칙을 만든다. 마지막 세 번째 단계에서는 유전자 알고리즘을 이용하여 중심값과 표준편차를 최적화함으로써 퍼지 모델의 소속 함수를 조절한다. 제안된 유전자 알고리즘의 장점은 흔히 신경 회로망에서 널리 쓰이는 역전파 알고리즘이 갖는 지역 최소점에 빠지는 현상이 없다는 것이다. 제안한 알고리즘의 유용성을 확인하기 위하여 일반적으로 가장 많이 쓰이는 비선형 시스템에 대하여 시뮬레이션 하여 확인하였다.

  • PDF

System Modeling based on Genetic Algorithms for Image Restoration : Rough-Fuzzy Entropy (영상복원을 위한 유전자기반 시스템 모델링 : 러프-퍼지엔트로피)

  • 박인규;황상문;진달복
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.93-103
    • /
    • 1998
  • 효율적이고 체계적인 퍼지제어를 위해 조작자의 제어동작을 모델링하거나 공정을 모델링하는 기법이 필요하고, 또한 퍼지 추론시에 조건부의 기여도(contribution factor)의 결정과 동작부의 제어량의 결정이 추론의 결과에 중요하다. 본 논문에서는 추론시 조건부의 기여도와 동작부의 세어량이 퍼지 엔트로피의 개념하에서 수행되는 적응 퍼지 추론시스템을 제시한다. 제시된 시스템은 전방향 신경회로망의 토대위에서 구현되며 주건부의 기여도가 퍼지 엔트로피에 의하여 구해지고, 동작부의 제어량은 확장된 퍼지 엔트로피에 의하여 구해진다. 이를 위한 학습 알고리즘으로는 역전파 알고리즘을 이용하여 조건부의 파라미터의 동정을 하고 동작부 파라미터의 동정에는 국부해에 보다 강인한 유전자 알고리즘을 이용하다. 이러한 모델링 기법을 임펄스 잡음과 가우시안 잡음이 첨가된 영상에 적용하여 본 결과, 영상복원시에 발생되는 여러 가지의 경우에 대한 적응성이 보다 양호하게 유지되었고, 전체영상의 20%의 데이터만으로도 객관적 화질에 있어서 기존의 추론 방법에 비해 향상을 보였다.

  • PDF

An Automatic Fuzzy Rule Extraction using Fuzzy Equalization and GA (퍼지 균등화와 유전알고리즘에 의한 자동적인 퍼지 규칙 생성)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.121-125
    • /
    • 2001
  • 본 논문에서는 자동적인 퍼지 규칙 생성을 위해 퍼지 균등화(Fuzzy Equalization)와 유전알고리즘(Genetic Algorithm)을 이용한 TSK 퍼지 시스템의 구축을 다룬다. Pedrycz에 의해 제안된 퍼지 균등화 방법은 수치적인 데이터로부터 확률분포함수를 구축한 후 전체공간상에서 이들을 적절히 표현할 수 있는 소속함수를 생성한다. 이렇게 구축된 각 입력에 대한 소속함수는 유전알고리즘에 의해 입력공간이 분할되며 결론부 파라미터는 최소자승법에 의해 추정되어 진다. 제안된 방법은 그리드 분할로 인해 규칙의 수가 증가하는 문제를 해결하고 학습데이터와 검증데이터에 의해 타당한 입력공간분할과 퍼지 규칙을 생성할 수 있다. 시뮬레이션의 예로서 Box-Jenkins의 가스로 데이터의 모델링에 적용하여 제안된 방법의 유용성을 알 수 있다.

  • PDF

Optimization of IG_based Fuzzy Set Fuzzy Model by Means of Adaptive Hierarchical Fair Competition-based Genetic Algorithms (적응형 계층적 공정 경쟁 유전자 알고리즘을 이용한 정보입자 기반 퍼지집합 퍼지모델의 최적화)

  • Choe, Jeong-Nae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.366-369
    • /
    • 2006
  • 본 논문에서는 계층적 공정 경쟁 유전자 알고리즘을 통한 비선형시스템의 정보입자 기반 퍼지집합 퍼지집합 모델의 최적화 방법을 제안한다. 퍼지집합 모델은 주로 전문가의 경험에 기반을 두어 얻어지기 때문에 동정과 최적화 과정이 필요하며 GAs를 이용하여 퍼지모델을 최적화한 연구가 많이 있다. GAs는 전역 해를 찾을 수 있는 최적화 알고리즘으로 잘 알려져 있지만 조기 수렴 문제를 포함하고 있다. 병렬유전자 알고리즘(PGA)은 조기수렴를 더디게 하고 전역 해를 찾기 위한 진화알고리즘이다. 적응형 계층적 공정 경쟁기반 유전자 알고리즘(AHFCGA)을 이용하여 퍼지모델의 입력변수, 멤버쉽함수의 수, 멤버쉽함수의 정점 등의 전반부 구조와 파라미터를 동정하였고, LSE를 사용하여 후반부 파라미터를 동정하였으며 실험적 예제를 통하여 제안된 방법의 성능을 평가한다.

  • PDF

Genetic Optimization of IG-based Fuzzy Model by Means of Improved Consecutive Tuning Method (개선된 연속적 동조 방법에 의한 정보 입자 퍼지 모델의 최적화)

  • Park, Geon-Jun;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.370-373
    • /
    • 2006
  • 본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 설계하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개선된 연속적 동조 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Design of TSK Fuzzy Controller Based on TSK Fuzzy Model (TSK퍼지모델로부터 TSK퍼지제어기의 설계)

  • Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.53-67
    • /
    • 1998
  • This paper suggests a method designing the TSK fuzzy controller based on the TSK fuzzy model, which guarantees the stability of the closed loop system and makes the response of the closed loop system to be a desired one. This paper deals with the general type of TSK fuzzy model of which consequents are affine equations having a constant term. The TSK fuzzy controller suggested in this paper is designed by using the pole placement which developed for the linear systems and makes the closed loop system have the same behavior as a desired linear system. A reference input can be introduced to the suggested TSK fuzzy controller and an integral action also can be introduced. Simulation results reveal that the suggested methods are practically feasible. This paper deals with both the continuous systems and the discrete systems.

  • PDF

퍼지 컴퓨터

  • 오경환
    • 전기의세계
    • /
    • v.39 no.12
    • /
    • pp.12-20
    • /
    • 1990
  • 기존의 이진논리는 애매모호한 인간의 지식을 표현하는데 많은 여러움이 있었다. 컴퓨터의 사고를 보다 인간에 가깝게 하기 위해 0과 1의 이진논리가 아닌, 0과1 사이의 실수로 애매모호함을 표현하는 Zadeh의 퍼지집합이론이 제안되었다. 이를 기초로 하여, 실제로 여러 종류의 퍼지 연산들을 수행하는 퍼지프로세서들이 개발되었으며, 퍼지 컴퓨터를 실현시키기 위한 연구가 활발히 진행되고 있다. 본고에서는 퍼지논리에 기초하여 퍼지정보처리(Fuzzy Information Processing)을 수행하는 대표적인 하드웨어 시스템인 퍼지 컴퓨터와 퍼지 컨트롤러 (fuzzy controller)에 대해 알아보고 다단계 퍼지 추론을 수행하는 퍼지 메모리 모듈(fuzzy memory module)의 기본인 퍼지 플립플롭에 대해 알아보고자 한다.

  • PDF

Stability Analysis and Proposal of the Simplified Form of a Fuzzy PID Controller with Fixed Parameters (고정 파라미터를 갖는 단순화된 퍼지 PID 제어기의 제안과 안정도 분석)

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.807-815
    • /
    • 2004
  • This paper describes the design principle of a fuzzy PID controller with fixed parameters, proposes the simulified form of a fuzzy PID controller to increase the computational efficiency and analyzes stability of a proposed fuzzy PID controller. After a detailed stability analysis using ‘small gain theorem’, a simple and practical sufficient condition for the BIBO stability of the overall feedback control system is derived. The derived stability condition offers a calculation method to obtain parameters of a fuzzy PID controller from parameters of a stable PID controller. Finally several computer simulations are executed to confirm the effectiveness of the fuzzy PID controller with fixed parameters.

A Development of Cyber Credit Decision Support System for Banking Facilities Using Fuzzy-expert Network (퍼지전문가회로망을 이용한 금융기관의 사이버 기업여신결정 지원시스템의 개발)

  • Kwon Hyuk-Dae
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.109-116
    • /
    • 2005
  • This paper is to develop the prototype of a decision making for loan granting system at banks and to evaluate the effectiveness of it. The prototype is called at FENET-LG in this paper. The decision to grant a loan is an unstructured and vagueness task because it is required a tremendous amount of data and many complex relationships among them. Evaluating these many data and relationships is a difficult task even for most experienced decision maker of bank. Therefore, where complex judgement is required, the decision maker of bank may benefit from the use of fuzzy expert network to support the evaluation of ability to pay back. Given the characteristics of decision maker of banking facilities judgement task about ability to pay back, the prototype system named FENET-LG is constructed by integration of fuzzy expert system and neural network. The FENET-LG takes advantage of both the deductive approach of fuzzy expert system and the inductive approach of a neural network to provide a decision aid designed to support and facilitate the process of conducting a judgement of ability to pay back.

  • PDF