• 제목/요약/키워드: 퍼지 소속도 함수

검색결과 397건 처리시간 0.02초

영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘 (An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation)

  • 퉁 투룽;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.49-57
    • /
    • 2012
  • FCM(fuzzy c-means)은 일반적으로 영상 분할에서 좋은 성능을 보인다. 하지만 공간 정보를 사용하지 않는 일반적인 FCM 알고리즘은 낮은 대비의 영상, 경계선이 뚜렷하지 않은 영상, 잡음이 포함된 영상의 분할에는 좋지 않은 성능을 보인다. 이와 같은 문제를 해결하기 위해 본 논문에서는 3x3 크기의 윈도우를 이용하여 윈도우 내의 중심 픽셀과 주변 픽셀간의 거리 정보를 소속 함수에 추가한 개선된 공간적 퍼지 클러스터링 알고리즘을 제안한다. 본 논문에서는 분할 계수, 분할 엔트로피, Xie-Bdni 함수와 같은 클러스터링 검증 함수를 이용하여 FCM 기반의 다양한 클러스터링 알고리즘과 제안한 알고리즘과의 성능을 비교하였다. 성능 평가 결과 제안한 알고리즘이 기존의 FCM기반의 클러스터링 알고리즘보다 클러스터링 검증 함수에서 성능이 우수함을 확인 할 수 있었다.

상대적 소수 함수에 기반을 둔 새로운 유사성 측도와 언어 근사에의 응용 (A New Similarity Measure based on RMF and It s Application to Linguistic Approximation)

  • 최대영
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.463-468
    • /
    • 2001
  • 상대적 소속 함수(RMF)에 기반을 둔 새로운 유사성 측도를 제안한다. 본 논문에서는 RMF는 퍼지 부분 집합간의 상대성을 쉽게 나타내기 위해 제시되었다. 이러한 RMF의 형태는 매개변수값들에 따라 결정되기 때문에 매개변수 값들만을 조정해 줌으로써 퍼지 부분 집합간의 상대성을 쉽게 나타낼 수 있다. 그러므로 퍼지 부분 집합을 이용해 주관성을 표현할 때 개인이나 문화차이간의 상대성을 쉽게 반영해 줄수 있다. 이 경우이들 매개변수들은 퍼비 부분 집합의 구조를 결정해 주는 특징점들이라고 할수 있다. 결과적으로 퍼지 부분 집합간의 유사성 정도가 RMF의 매개변수들을 이용해서 빠르게 계산될 수 있다. RMF에 의해 퍼지 부분 집합간의 유사성 정도를 계산하기 위해 유클리디안 거리를 사용한다. 한편, 제안된 유사성 측도의 응용 분야로 새로운 언어 근사 방법을 제시하고 수치적인 예를 보여준다.

  • PDF

퍼지 논리를 이용한 색채 기반 감성 분석 (Color-based Emotion Analysis Using Fuzzy Logic)

  • 우영운;김창규;김치용
    • 디지털콘텐츠학회 논문지
    • /
    • 제9권2호
    • /
    • pp.245-250
    • /
    • 2008
  • 색채 심리학은 색채와 관련된 인간의 행동을 연구하는 심리학의 한 분야이다. 색채는 상징성과 이미지를 지니는 동시에 인간과 심리적 교감을 나눈다. 각 색채는 희망, 열정, 사랑, 생명, 죽음 등 다양한 이미지를 갖고 있다. 여기에 각 색깔이 주는 독특한 자극은 인간의 감성과 심리에 큰 영향을 미치고 있다. 따라서 본 논문에서는 사용자가 방 모델링을 하고 그 모델링에 사용된 색상 정보를 분석하고 퍼지 소속 함수를 적용하여 소속도를 구한 후, 그 소속도를 퍼지 추론 규칙에 적용하여 각 색채의 빈도수를 백분율로 나타낸 후 그 색채에 따른 인간의 감성 상태를 파악하는 기법을 제안하였다. 제안된 색체 기반 감성 분석 기법을 알슐러와 해트윅(Alschuler and Hattwick)의 색채에 따른 감성 상태에 적용한 결과, 제안된 기법이 효율적인 것을 확인하였다.

  • PDF

거리 기반의 특징 선택을 이용한 간질 분류 (Classification of Epilepsy Using Distance-Based Feature Selection)

  • 이상홍
    • 디지털융복합연구
    • /
    • 제12권8호
    • /
    • pp.321-327
    • /
    • 2014
  • 특징 선택은 중복 또는 서로간의 관련이 없는 특징을 제거하여 분류 성능을 향상시키는 기술이다. 본 논문에서는 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership Functions; NEWFM)에서 제공하는 가중 퍼지소속함수의 경계합 (Bounded Sum of Weighted Fuzzy Membership functions, BSWFM)의 무게중심간의 거리를 이용한 새로운 특징 선택을 제안하여 분류 성능을 향상시켰다. 이러한 거리 기반의 특징 선택을 이용하여 초기 24개의 특징으로부터 무게중심간의 거리가 짧은 특징을 하나씩 제거되면서 분류 성능이 가능 높은 22개의 최소 특징을 선택하였다. 이들 22개의 최소 특징을 NEWFM의 입력으로 사용하여 97.7%, 99.7%, 98.7%의 민감도, 특이도, 정확도를 각각 구하였다.

NEWFM을 이용한 자동 조기심실수축 탐지 (Automatic Premature Ventricular Contraction Detection Using NEWFM)

  • 임준식
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.378-382
    • /
    • 2006
  • 본 논문은 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)을 이용하여 심전도(ECG) 신호로부터 조기심실수축(premature ventricular contractions, PVC)을 자동 탐지하는 방안을 제시하고 있다. NEWFM은 MIT-BIH 데이터베이스의 부정맥 심전도를 웨이블릿 변환(wavelet transform, WT)한 계수로부터 학습하여 정상 파형과 PVC 파형을 구분한다. 비중복면적 분산 측정법을 적용하여 중요도가 가장 높은 계수 2개를 추출하여 분류규칙을 최소화하였고, 이를 사용하여 99.90%의 PVC 분류성능을 나타내었다. 또한 추출된 두 계수의 R파를 기준으로 한 위치를 제시함으로써 두 위치의 정보만으로 PVC를 탐지할 수 있음을 보여주었다.

러프 집합이론을 이용한 뉴로-퍼지 모델의 최적화 (A Neuro-Fuzzy Model Optimization Using Rough Set Theory)

  • 연정흠;서재용;김용택;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.188-193
    • /
    • 2000
  • 본 논문에서는 플랜트를 위한 규칙수가 줄어든 뉴로-퍼지 모델을 얻기 위한 접근을 제안한다. 뉴로-퍼지 네트워크는 가우시안 소속함수를 가진 RBF(Radial Basis Function) 네트워크들로 구성되고 오차 역전파 학습 알고리듬에 의해 학습된다. 러프 집합 이론에서 의존도는 규칙들으 줄이는데 사용된다. 모델에서 각 규칙이 조건 소속함수 값과 플랜트의 출력 값 사이의 의온도는 플랜트를 동정하기 위하여 규칙이 얼마나 많은 공헌을 하는가를 알 수 있도록 한다. 줄어든 모델은 원래의 것으로써 동일한 성능을 유지하는 동안 선택 알고리듬은 복잡성과 구조의 잉여성을 최소화할 수 있다.

  • PDF

HCM 클러스터링 알고리즘 기반 비퍼지 추론 시스템의 비선형 특성 (Nonlinear Characteristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5379-5388
    • /
    • 2012
  • 비선형 공정에 대한 퍼지 모델링에서, 퍼지 규칙은 일반적으로 입력 변수 선택, 공간 분할 수 및 소속 함수에 의해 형성된다. 비선형 공정에 대한 퍼지 규칙의 생성은 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 입력 공간의 퍼지 분할에 의한 퍼지 규칙을 생성함으로써 복잡한 비선형 공정을 모델링 할 수 있다. 따라서 본 논문에서는 HCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 비퍼지 추론 시스템의 규칙을 생성한다. 규칙의 전반부 파라미터는 HCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 마지막으로, 비선형 공정으로는 널리 이용되는 데이터를 이용하여 비선형 특성 및 성능을 평가한다. 본 실험을 통해 고차원의 비선형 시스템은 매우 적은 수의 규칙을 가지고 모델링할 수 있었다.

퍼지-뉴럴 네트워크를 이용한 자율 이동로봇의 운항 (Navigation of Autonomous Mobile Robot using Fuzzy Neural Network)

  • 최정원
    • 조명전기설비학회논문지
    • /
    • 제22권4호
    • /
    • pp.19-25
    • /
    • 2008
  • 본 논문은 장애물에 대한 사전 정보를 가지고 있지 않은 미지의 공간에서 장애물의 회피와 지정된 목표점으로 이동할 수 있는 자율이동로봇을 위한 퍼지-뉴럴 네트워크를 이용한 지능제어 알고리즘을 제안하고, 제안된 제어기의 효용성을 모의실험과 실제 로봇의 구동실험을 통하여 검증을 한다. 제시한 지능제어기는 계층구조의 알고리즘으로 로봇이 목표에 도달하기 위한 퍼지 알고리즘과 주행 중 만날 수 있는 장애물들에 대한 회피를 수행하는 퍼지-뉴럴 알고리즘으로 구성된 계층과, 로봇이 이동하면서 만날 수 있는 여러 가지 상황에 따라 장애물 회피동작과 목표점 도달동작을 수행할 수 있도록 두 알고리즘에 적당한 가중치를 부여하는 가중치 퍼지 알고리즘으로 구성되어 있다. 그리고 로봇의 현재 운동정보와 장애물까지의 거리정보를 바탕으로 가중치 퍼지 알고리즘의 출력부 소속도 함수를 조절함으로서 오목한 장애물에 대해서도 장애물 회피 동작을 수행하도록 하였다. 제작된 로봇으로 제시한 알고리즘의 실효성을 검증하였다.

유전자 알고리즘을 이용한 퍼지 추론에서의 퍼지 함축에 관한 연구 (Investigations on the Fuzzy Implication in the context of the Genetic-Based Fuzzy Reasoning)

  • 임영희;이혜성;박대희
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.13-27
    • /
    • 1995
  • 국내외 문헌을 조사해 볼때, 최적의 퍼지 함축을 선택하는 것이 퍼지 추론 및 퍼지 추론의 모든 응용 분야에서 근본적인 문제임을 알 수 있다. 그러나 많은 연구가들의 계속적인 연구에도 불구하고 개인적인 평가 기준과 사용되는 응용 모델에 따라 각기 다른 성능 평가가 이루어졌으므로 퍼지 함축의 선택 문제는 아직까지도 논란의 대상이 되고 있다. 최근 학습이론의 도입으로 퍼지 추론을 상당한 효과를 보았으나 퍼지 함축의 선택 문제와 관련된 연구는 전무하다. 따라서 본 논문에서는 유전자 알고리즘을 퍼지 추론에 적용했을 때의 퍼지 함축의 선택 문제를 고찰, 분석한다. 즉 유전자 알고리즘을 이용하여 퍼지 소속 함수를 조정함으로써 퍼지 추론 기관의 성능 향상뿐 아니라 폭 넓은 퍼지 함축의 선택이 가능하다.

  • PDF

뉴로-퍼지 회로망

  • 이민호;박철훈;이수영
    • 제어로봇시스템학회지
    • /
    • 제1권3호
    • /
    • pp.83-91
    • /
    • 1995
  • 이 글에서는 신경회로망의 장점과 퍼지논리의 장점을 최대한 이용하며 각각의 단점을 보완하는 뉴로-퍼지 융합 기술과 현재 연구의 흐름을 간단히 살펴보았다. 비구조적인 정보 뿐만 아니라 구조적인 정보까지도 신경회로망의 영역 안에서 처리할 수 있는 새로운 뉴로-퍼지 회로망을 소개하였다. 소개한 뉴로-퍼지 회로망은 비퍼지화와 비퍼지화에 의해 발생하는 오차를 잘 보상할 수 있을 뿐만 아니라, 최적의 입출력 퍼지 소속 함수의 중심점과 모양을 찾을 수 있는 장점이 있다. 또한, 그 특성을 알지 못하는 임의의 비선형 동적 시스템에서 입출력 데이터만 얻을 수 있으며 시스템을 모델할 수 있는 퍼지 규칙을 언어적인 방법과 수치적인 방법으로 표현할 수 있으며 간단한 예제를 통한 시뮬레이션 결과를 보였다. 소개한 뉴로-퍼지 회로망을 이용하여 뉴로-퍼지 제어기를 구성할 수도 있으며, 또한 시스템의 역 퍼지 규칙을 찾는데 이용할 수도 있다. 향후 보다 우수한 일반화 성능을 가질 수 있는 뉴로-퍼지 회로망의 개발이 필요하며, 충분한 입출력 데이터를 얻는 방법의 연구도 필요하다.

  • PDF