• Title/Summary/Keyword: 퍼지 선형 판별 분석법

Search Result 5, Processing Time 0.024 seconds

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Robust Face Recognition Against Illumination Change Using Visible and Infrared Images (가시광선 영상과 적외선 영상의 융합을 이용한 조명변화에 강인한 얼굴 인식)

  • Kim, Sa-Mun;Lee, Dea-Jong;Song, Chang-Kyu;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • Face recognition system has advanctage to automatically recognize a person without causing repulsion at deteciton process. However, the face recognition system has a drawback to show lower perfomance according to illumination variation unlike the other biometric systems using fingerprint and iris. Therefore, this paper proposed a robust face recogntion method against illumination varition by slective fusion technique using both visible and infrared faces based on fuzzy linear disciment analysis(fuzzy-LDA). In the first step, both the visible image and infrared image are divided into four bands using wavelet transform. In the second step, Euclidean distance is calculated at each subband. In the third step, recognition rate is determined at each subband using the Euclidean distance calculated in the second step. And then, weights are determined by considering the recognition rate of each band. Finally, a fusion face recognition is performed and robust recognition results are obtained.

A Study on Fuzzy Wavelet LDA Mixed Model for an effective Face Expression Recognition (효과적인 얼굴 표정 인식을 위한 퍼지 웨이브렛 LDA융합 모델 연구)

  • Rho, Jong-Heun;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.759-765
    • /
    • 2006
  • In this paper, it is proposed an effective face expression recognition LDA mixed mode using a triangularity membership fuzzy function and wavelet basis. The proposal algorithm gets performs the optimal image, fuzzy wavelet algorithm and Expression recognition is consisted of face characteristic detection step and face Expression recognition step. This paper could applied to the PCA and LDA in using some simple strategies and also compares and analyzes the performance of the LDA mixed model which is combined and the facial expression recognition based on PCA and LDA. The LDA mixed model is represented by the PCA and the LDA approaches. And then we calculate the distance of vectors dPCA, dLDA from all fates in the database. Last, the two vectors are combined according to a given combination rule and the final decision is made by NNPC. In a result, we could showed the superior the LDA mixed model can be than the conventional algorithm.

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Face Recognition Under Ubiquitous Environments (유비쿼터스 환경을 이용한 얼굴인식)

  • Go, Hyoun-Joo;Kim, Hyung-Bae;Yang, Dong-Hwa;Park, Jang-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2004
  • This paper propose a facial recognition method based on an ubiquitous computing that is one of next generation intelligence technology fields. The facial images are acquired by a mobile device so-called cellular phone camera. We consider a mobile security using facial feature extraction and recognition process. Facial recognition is performed by the PCA and fuzzy LDA algorithm. Applying the discrete wavelet based on multi-resolution analysis, we compress the image data for mobile system environment. Euclidean metric is applied to measure the similarity among acquired features and then obtain the recognition rate. Finally we use the mobile equipment to show the efficiency of method. From various experiments, we find that our proposed method shows better results, even though the resolution of mobile camera is lower than conventional camera.