Journal of the Korean Institute of Intelligent Systems
/
v.24
no.2
/
pp.161-165
/
2014
In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.
Journal of the Korea Society of Computer and Information
/
v.19
no.8
/
pp.11-18
/
2014
In This paper, we propose the unsupervised learning and fuzzy logic-based coupled data classification method base on ART. The unsupervised learning-based data classification helps improve the grouping technique, but decreases the processing efficiency. However, the data classification requires the decision technique to induce high success rate of data classification with optimal threshold. Therefore it is also necessary to solve the uncertainty of the threshold decision. The proposed method deduces the optimal threshold with the designing of fuzzy parameter and rules. In order to evaluate the proposed method, we design the simulation model with the GPCR(G protein coupled receptor) data in cloud computing environment. Simulation results verify the efficiency of our method with the high recognition rate and low processing time.
Journal of the Korean Institute of Intelligent Systems
/
v.5
no.1
/
pp.43-51
/
1995
In this paper, we propose a neural network with fuzzy preprocessor not only for improving the classifi¬cation accuracy but also for being able to classify objects whose attribute values do not have clear bound¬aries. The fuzzy input signal representation scheme is included as a preprocessing module. It transforms imprecise input in linguistic form and precisely stated numerical input into multidimensional numerical values. 'The transformed input is processed in the postprocessing module. The experimental results indi-cate the superiority of fuzzy input signal representation scheme in comparison to binary input signal rep¬resentation scheme and decimal input signal representation scheme.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.685-691
/
2008
The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.21-23
/
1999
결정 트리는 실세계에서 얻어지는 많은 사례들로부터 분류 정보를 얻기 위해 사용되는 유용한 방법중의 하나이다. 분류를 목적으로 사용되는 사례, 즉 데이터들은 실제 현장에서 얻어지기 때문에 관측오류, 불확실성, 주관적인 판단 등의 원인으로 참 값이 아닌 근사 값으로써 기술되는 경우가 많으며, 이러한 잠재적 오류로 인해 잘못된 결정 트리가 생성될 수 있다. 한편, 트리를 생성하는 각각의 과정에서 하나의 특징 값만을 고려하지 않고 두 가지 이상의 특징 값을 동시에 고려하여 결정 트리를 생성할 경우 보다 정확한 분류 정보를 기대할 수 있다. 본 논문에서는 수치 특징 값으로 기술된 데이터로부터 보다 정확한 분류 정보를 얻을 수 있고, 작은 오류에 강건한 사선형 분할 퍼지 결정 트리를 제안한다. 또한 제안된 사선형 분할 퍼지 결정 트리의 생성 절차 및 생성된 결정 트리를 이용하여 새로운 데이터에 분류 정보를 부여하는 추론 과정을 소개한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.361-364
/
2004
인터넷의 급격한 보급으로 다양하고 많은 종류의 유용한 정보를 이용할 수 있게 되었다. 이와 같은 정보의 바다에서 원하는 정보를 검색하고 이를 관리하고 사용하는 것은 매우 어렵다 이러한 문제를 해결하기 위해 검색엔진, 메타검색 엔진, 스파이더, 지능 에이전트 혹은 웹 에이전트와 같은 여러 종류의 시스템들이 개발되고 있다. 이와 같은 시스템들은 지능 에이전트로써 정보의 과부하를 피하기 위해 사용되어지고 있다. 소프트웨어 에이전트들을 효율적으로 개선하기 위해서는 검색된 데이터를 표현하고 분류하는 것이 필요하다. 또한, 분류기를 생성할 수 있는 지능 에이전트들의 성능을 개선하기 위해 퍼지 이론을 적용하여, 웹으로부터 다른 검색 정보와의 적합성을 평가하고, 사용자에게 가장 적합한 정보를 분류하기 위한 방법을 제안한다.
The rapid increase of information imposes new demands of content management. The purpose of automatic audio segmentation and classification is to meet the rising need for efficient content management. With this reason, this paper proposes a high-accuracy algorithm that segments audio signals and classifies them into different classes such as speech, music, silence, and environment sounds. The proposed algorithm utilizes support vector machine (SVM) to detect audio-cuts, which are boundaries between different kinds of sounds using the parameter sequence. We then extract feature vectors that are composed of statistical data and they are used as an input of fuzzy c-means (FCM) classifier to partition audio-segments into different classes. To evaluate segmentation and classification performance of the proposed SVM-FCM based algorithm, we consider precision and recall rates for segmentation and classification accuracy for classification. Furthermore, we compare the proposed algorithm with other methods including binary and FCM classifiers in terms of segmentation performance. Experimental results show that the proposed algorithm outperforms other methods in both precision and recall rates.
Journal of the Korean Institute of Intelligent Systems
/
v.5
no.2
/
pp.28-43
/
1995
This paper concerns with automatic generation of fuzzy rules which can be used for pattern classification.
Feature space is recursively subdivided into hyperspheres, and each hypersphere is represented by
its centroid and bounding distance. Fuzzy rules are then generated based on the constructed hyperspheres.
The resulting fuzzy rules have very simple premise parts, and they can be organized into a hierarchical
structure so that classification process can be implemented very rapidly. The experimented results show
that the suggested method works very well compared to other methods.
In this paper, we propose a method for robustly estimating camera motion using fuzzy classification from the correspondences between two images. We use a RANSAC(Random Sample Consensus) algorithm to obtain accurate camera motion estimates in the presence of outliers. The drawback of RANSAC is that its performance depends on a prior knowledge of the outlier ratio. To resolve this problem the proposed method classifies samples into three classes(good sample set, bad sample set and vague sample set) using fuzzy classification. It then improves classification accuracy omitting outliers by iteratively sampling in only good sample set. The experimental results show that the proposed approach is very effective for computing a homography.
Journal of the Korea Society of Computer and Information
/
v.14
no.7
/
pp.9-15
/
2009
The fuzzy weighted mean classifier is one of the most common classification models and could achieve high performance by adjusting the weights. However, the weights were generally decided based on the experience of experts, which made the resulting classifiers to suffer the lack of consistency and objectivity. To resolve this problem, in this paper, a weight deciding method based on the statistics of the data is introduced, which ensures the learned classifiers to be consistent and objective. To investigate the effectiveness of the proposed methods, Iris data set available from UCI machine learning repository is used and promising results are obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.