• Title/Summary/Keyword: 퍼지 분류

Search Result 512, Processing Time 0.034 seconds

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Coupled data classification method using unsupervised learning and fuzzy logic in Cloud computing environment (클라우드 컴퓨팅 환경에서 무감독학습 방법과 퍼지이론을 이용한 결합형 데이터 분류기법)

  • Cho, Kyu-Cheol;Kim, Jae-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.11-18
    • /
    • 2014
  • In This paper, we propose the unsupervised learning and fuzzy logic-based coupled data classification method base on ART. The unsupervised learning-based data classification helps improve the grouping technique, but decreases the processing efficiency. However, the data classification requires the decision technique to induce high success rate of data classification with optimal threshold. Therefore it is also necessary to solve the uncertainty of the threshold decision. The proposed method deduces the optimal threshold with the designing of fuzzy parameter and rules. In order to evaluate the proposed method, we design the simulation model with the GPCR(G protein coupled receptor) data in cloud computing environment. Simulation results verify the efficiency of our method with the high recognition rate and low processing time.

Development of a Neural Network with Fuzzy Preprosessor (퍼지 전처리기를 가진 신경회로망 모델의 개발)

  • 조성원;황인호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.43-51
    • /
    • 1995
  • In this paper, we propose a neural network with fuzzy preprocessor not only for improving the classifi¬cation accuracy but also for being able to classify objects whose attribute values do not have clear bound¬aries. The fuzzy input signal representation scheme is included as a preprocessing module. It transforms imprecise input in linguistic form and precisely stated numerical input into multidimensional numerical values. 'The transformed input is processed in the postprocessing module. The experimental results indi-cate the superiority of fuzzy input signal representation scheme in comparison to binary input signal rep¬resentation scheme and decimal input signal representation scheme.

  • PDF

Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification (퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.

A Fuzzy Decision Tree to Partition Feature Space with Oblique Planes (특징 공간을 사선 분할하는 퍼지 결정 트리)

  • 이우항;이건명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.21-23
    • /
    • 1999
  • 결정 트리는 실세계에서 얻어지는 많은 사례들로부터 분류 정보를 얻기 위해 사용되는 유용한 방법중의 하나이다. 분류를 목적으로 사용되는 사례, 즉 데이터들은 실제 현장에서 얻어지기 때문에 관측오류, 불확실성, 주관적인 판단 등의 원인으로 참 값이 아닌 근사 값으로써 기술되는 경우가 많으며, 이러한 잠재적 오류로 인해 잘못된 결정 트리가 생성될 수 있다. 한편, 트리를 생성하는 각각의 과정에서 하나의 특징 값만을 고려하지 않고 두 가지 이상의 특징 값을 동시에 고려하여 결정 트리를 생성할 경우 보다 정확한 분류 정보를 기대할 수 있다. 본 논문에서는 수치 특징 값으로 기술된 데이터로부터 보다 정확한 분류 정보를 얻을 수 있고, 작은 오류에 강건한 사선형 분할 퍼지 결정 트리를 제안한다. 또한 제안된 사선형 분할 퍼지 결정 트리의 생성 절차 및 생성된 결정 트리를 이용하여 새로운 데이터에 분류 정보를 부여하는 추론 과정을 소개한다.

  • PDF

A Study on Information Classification Evaluation of Web Agent Using Fuzzy Theory (퍼지 이론을 이용한 웹 에이전트의 정보 분류 평가에 관한 연구)

  • 김두완;정구범;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.361-364
    • /
    • 2004
  • 인터넷의 급격한 보급으로 다양하고 많은 종류의 유용한 정보를 이용할 수 있게 되었다. 이와 같은 정보의 바다에서 원하는 정보를 검색하고 이를 관리하고 사용하는 것은 매우 어렵다 이러한 문제를 해결하기 위해 검색엔진, 메타검색 엔진, 스파이더, 지능 에이전트 혹은 웹 에이전트와 같은 여러 종류의 시스템들이 개발되고 있다. 이와 같은 시스템들은 지능 에이전트로써 정보의 과부하를 피하기 위해 사용되어지고 있다. 소프트웨어 에이전트들을 효율적으로 개선하기 위해서는 검색된 데이터를 표현하고 분류하는 것이 필요하다. 또한, 분류기를 생성할 수 있는 지능 에이전트들의 성능을 개선하기 위해 퍼지 이론을 적용하여, 웹으로부터 다른 검색 정보와의 적합성을 평가하고, 사용자에게 가장 적합한 정보를 분류하기 위한 방법을 제안한다.

  • PDF

Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques (서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류)

  • Nguyen, Ngoc;Kang, Myeong-Su;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The rapid increase of information imposes new demands of content management. The purpose of automatic audio segmentation and classification is to meet the rising need for efficient content management. With this reason, this paper proposes a high-accuracy algorithm that segments audio signals and classifies them into different classes such as speech, music, silence, and environment sounds. The proposed algorithm utilizes support vector machine (SVM) to detect audio-cuts, which are boundaries between different kinds of sounds using the parameter sequence. We then extract feature vectors that are composed of statistical data and they are used as an input of fuzzy c-means (FCM) classifier to partition audio-segments into different classes. To evaluate segmentation and classification performance of the proposed SVM-FCM based algorithm, we consider precision and recall rates for segmentation and classification accuracy for classification. Furthermore, we compare the proposed algorithm with other methods including binary and FCM classifiers in terms of segmentation performance. Experimental results show that the proposed algorithm outperforms other methods in both precision and recall rates.

Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules (결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할)

  • 김봉근;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.28-43
    • /
    • 1995
  • This paper concerns with automatic generation of fuzzy rules which can be used for pattern classification. Feature space is recursively subdivided into hyperspheres, and each hypersphere is represented by its centroid and bounding distance. Fuzzy rules are then generated based on the constructed hyperspheres. The resulting fuzzy rules have very simple premise parts, and they can be organized into a hierarchical structure so that classification process can be implemented very rapidly. The experimented results show that the suggested method works very well compared to other methods.

  • PDF

Robust Estimation of Camera Motion using Fuzzy Classification Method (퍼지 분류기법을 이용한 강건한 카메라 동작 추정)

  • Lee, Joong-Jae;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.671-678
    • /
    • 2006
  • In this paper, we propose a method for robustly estimating camera motion using fuzzy classification from the correspondences between two images. We use a RANSAC(Random Sample Consensus) algorithm to obtain accurate camera motion estimates in the presence of outliers. The drawback of RANSAC is that its performance depends on a prior knowledge of the outlier ratio. To resolve this problem the proposed method classifies samples into three classes(good sample set, bad sample set and vague sample set) using fuzzy classification. It then improves classification accuracy omitting outliers by iteratively sampling in only good sample set. The experimental results show that the proposed approach is very effective for computing a homography.

Proposal of Weight Adjustment Methods Using Statistical Information in Fuzzy Weighted Mean Classifiers (퍼지 가중치 평균 분류기에서 통계 정보를 활용한 가중치 설정 기법의 제안)

  • Woo, Young-Woon;Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.9-15
    • /
    • 2009
  • The fuzzy weighted mean classifier is one of the most common classification models and could achieve high performance by adjusting the weights. However, the weights were generally decided based on the experience of experts, which made the resulting classifiers to suffer the lack of consistency and objectivity. To resolve this problem, in this paper, a weight deciding method based on the statistics of the data is introduced, which ensures the learned classifiers to be consistent and objective. To investigate the effectiveness of the proposed methods, Iris data set available from UCI machine learning repository is used and promising results are obtained.