• Title/Summary/Keyword: 퍼지 분류기

Search Result 129, Processing Time 0.026 seconds

Design of a pattern classifier using fuzzy neural networks (퍼지 신경망을 이용한 패턴 분류기의 설계)

  • 김재현;서일홍;김태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.724-730
    • /
    • 1993
  • Most of clustering methods usually employ the center of a cluster to assign the input data into a cluster. When the shape of a cluster could not be easily represented by the center of cluster, however, it is difficult to assign input data into a proper cluster using previous methods. In this paper, to overcome such a difficulty, a cluster is to be represented as a collection of several subclusters. And membership functions are used to represent how much input data belong to subclusters. Then the position of each subcluster is adoptively corrected by use of a competitive learning neural network. To show the validity of the proposed method, a numerical example is illustrated, where FMMC(Fuzzy Min-Max Clustering) algorithm is compared with the proposed method.

  • PDF

A Study on Pattern Recognition Using Polynomial-based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 패턴인식에 대한 연구)

  • Ji, Kwang-Hee;Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.387-389
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.

  • PDF

Design of the Pattern Classifier using Fuzzy Neural Network (퍼지 신경 회로망을 이용한 패턴 분류기의 설계)

  • Kim, Moon-Hwan;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2573-2575
    • /
    • 2003
  • In this paper, we discuss a fuzzy neural network classifier with immune algorithm. The fuzzy neural network classifier is constructed with the fuzzy classifier and the neural network classifier based on fuzzy rules. To maximize performance of classifier, the immune algorithm and the back propagation algorithm are used. For the generalized classification ability, the simulation results from the iris data demonstrate superiority of the proposed classifier in comparison with other classifier.

  • PDF

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.

Development of Attack Intention Extractor for Soccer Robot system (축구 로봇의 공격 의도 추출기 설계)

  • 박해리;정진우;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.193-205
    • /
    • 2003
  • There has been so many research activities about robot soccer system in the many research fields, for example, intelligent control, communication, computer technology, sensor technology, image processing, mechatronics. Especially researchers research strategy for attacking in the field of strategy, and develop intelligent strategy. Then, soccer robots cannot defense completely and efficiently by using simple defense strategy. Therefore, intention extraction of attacker is needed for efficient defense. In this thesis, intention extractor of soccer robots is designed and developed based on FMMNN(Fuzzy Min-Max Neural networks ). First, intention for soccer robot system is defined, and intention extraction for soccer robot system is explained.. Next, FMMNN based intention extractor for soccer robot system is determined. FMMNN is one of the pattern classification method and have several advantages: on-line adaptation, short training time, soft decision. Therefore, FMMNN is suitable for soccer robot system having dynamic environment. Observer extracts attack intention of opponents by using this intention exactor, and this intention extractor is also used for analyzing strategy of opponent team. The capability of developed intention extractor is verified by simulation of 3 vs. 3 robot succor simulator. It was confirmed that the rates of intention extraction each experiment increase.

Design of Precipitation/non-precipitation Pattern Classification System based on Neuro-fuzzy Algorithm using Meteorological Radar Data : Instance Classifier and Echo Classifier (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 강수/비강수 패턴분류 시스템 설계 : 사례 분류기 및 에코 분류기)

  • Ko, Jun-Hyun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1114-1124
    • /
    • 2015
  • In this paper, precipitation / non-precipitation pattern classification of meteorological radar data is conducted by using neuro-fuzzy algorithm. Structure expression of meteorological radar data information is analyzed in order to effectively classify precipitation and non-precipitation. Also diverse input variables for designing pattern classifier could be considered by exploiting the quantitative as well as qualitative characteristic of meteorological radar data information and then each characteristic of input variables is analyzed. Preferred pattern classifier can be designed by essential input variables that give a decisive effect on output performance as well as model architecture. As the proposed model architecture, neuro-fuzzy algorithm is designed by using FCM-based radial basis function neural network(RBFNN). Two parts of classifiers such as instance classifier part and echo classifier part are designed and carried out serially in the entire system architecture. In the instance classifier part, the pattern classifier identifies between precipitation and non-precipitation data. In the echo classifier part, because precipitation data information identified by the instance classifier could partially involve non-precipitation data information, echo classifier is considered to classify between them. The performance of the proposed classifier is evaluated and analyzed when compared with existing QC method.

Implementation of Medical Information System for Korean by Tissue Mineral Analysis (모발분석 및 처리를 위한 한국형 의료 정보 시스템 구축)

  • 조영임
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.148-160
    • /
    • 2003
  • TMA(Tissue Mineral Analysis) is very popular method in hair mineral analysis for health care professionals in over 48 countries medical center. Assesment of nutritional minerals and toxic elements in the hair is very important not only for determining adequacy, deficiencies and unbalance, but also for assessing their relative relationships in a body. In Korea, there are some problems in TMA method. Because of not haying a medical information database which is suitable for korean to do analyze, the requested TMA has to send to TEI-USA. However, as the TMA results from TEI-USA is composed of English documents and graphic files prohibited to open, its usability is very low and a lot of dollars has to be payed. Also, it can make some problems in the reliability of the TMA results, since the TMA results are based on the database of western health and mineral standards, To solve these problems, I developed the first Medical Information System of TMA in Korea here. The system can analyze the complex tissue mineral data with multiple stage decision tree classifier. It is also constructed with multiple fuzzy database and hence analyze the TMA data by fuzzy inference methods. The effectiveness test of this systems can be shown the increased business efficiency and satisfaction rate 86% and 92% respectively.

  • PDF

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.

Control of Temperature and the Direction of Wind Using Thermal Images and a Fuzzy Control Method (열 영상과 퍼지 제어 기법을 이용한 온도 및 풍향 제어)

  • Kim, Kwang-Baek;Cho, Jae-Hyun;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2083-2090
    • /
    • 2008
  • In this paper, we propose a method for control of temperature and the direction of wind in an air-cooler using thermal images and fuzzy inference rules in order to achieve energy saving. In a simulation for controlling temperature, a thermal image is transformed to a color distribution image of $300{\times}400$ size to analyze the thermal image. A color distribution image is composed of R, G and B values haying temperature values of Red, Magenta, Yellow, Green, Cyan and Blue. Each color has a temperature value from $24.0^{\circ}C$ to $27.0^{\circ}C$ and a color distribution image is classified into height hierarchies from level 1 to level 10. The classified hierarchies have their peculiar color distributions and temperature values are assigned to each level by temperature values of the peculiar colors. The process for controlling overall balance of temperature and the direction of wind in an indoor space is as follows. Fuzzy membership functions are designed by the direction of wind, duration time, and temperature and height values of a color distribution image to calculate the strength of wind. After then, the strength of wind is calculated by membership values of membership functions.

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.