• 제목/요약/키워드: 퍼지 뉴럴 네트워크

검색결과 117건 처리시간 0.034초

풍력 발전 출력 예측을 위한 퍼지 뉴런 기반의 예측 모델 개발

  • 강종진;박규영;한창욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.673-673
    • /
    • 2013
  • 최근 시대의 흐름에 따라 많은 에너지의 사용으로 여러 가지 에너지원이 필요로 하게 되면서 지금까지는 석탄, 석유 등 매장된 에너지원을 사용하고 있지만, 최근 에너지 위기와 여러 가지의 환경문제가 대두 되면서 세계적으로 새로운 청정에너지원을 필요로 하게 되었다. 그 결과 태양광, 풍력, 지열 등 여러 가지의 신재생에너지원이 대두되게 되었으며, 여러 가지의 신재생에너지원 중 주목받고 있는 풍력에너지에 대한 연구가 현재 활발히 진행 중에 있다. 풍력발전은 바람의 에너지를 이용해 블레이드에 연결된 터빈을 구동하여 전기 에너지를 얻는 방식이며, 아직까지는 많은 곳에서 사용될 만큼 생산이 되지 않고 있지만 조만간 많은 곳에서 쓰일 것으로 예상된다. 풍력발전 시스템이 전력시장에서 차지하는 비중이 점차 증가하고 있으나 풍향, 풍속 등의 변화로 인하여 안정적인 발전 출력을 항상 보장할 수 없다. 그러므로 본 논문에서는 실제 풍력발전기로부터 수집된 풍향, 풍속, 발전출력 데이터를 처리하여 데이터베이스를 구축하고, 퍼지 뉴런에 기반한 퍼지-뉴럴 네트워크 예측 모델을 이용하여 풍력발전 출력을 예측하였다.

  • PDF

부분방전 패턴인식을 위한 퍼지 집합 기반 퍼지뉴럴네트워크 설계 (Design of Fuzzy Set-based Fuzzy Neural Networks for Partial Discharge Pattern Recognition)

  • 박건준;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.453-454
    • /
    • 2007
  • 전력설비에 대한 부분방전 패턴인식은 결함의 차이에 따라 다양한 패턴의 차이를 보이고 있으며, 신경회로망을 비롯한 다양한 패턴인식 기법들이 적용되고 있다. 본 논문에서는 이의 일환으로 퍼지 집합 기반 퍼지뉴럴네트워크를 설계하여 초고압 XLPE 케이블 절연접속함의 모의 결합에 대해 부분방전 신호를 패턴인식하고자 한다. 부분방전 신호는 보이드 방전, 코로나 방전, 노이즈의 3개 클래스로 분류하게 되며, PRPDA 방법을 통해 556개의 입력 벡터와 3개의 출력 벡터를 가지며 총 120개의 패턴수를 가진다.

  • PDF

로직에 기반 한 트리 구조의 퍼지 뉴럴 네트워크를 이용한 복합 화력 발전소의 출력 예측 (Output Power Prediction of Combined Cycle Power Plant using Logic-based Tree Structured Fuzzy Neural Networks)

  • 한창욱;이돈규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.529-533
    • /
    • 2019
  • 오늘날 복합 화력 발전소는 전력 생산을 위해 많이 사용되고 있고, 최근에는 운전 매개 변수를 기반으로 발전 출력을 예측하는 것이 주요 관심사이다. 본 논문에서는 복합 화력 발전소의 출력을 예측하기 위해 컴퓨터 지능 기법을 이용하는 방법을 제시한다. 컴퓨터 지능 기술은 지속적으로 발전되어 많은 실제 문제에 적용되어 왔다. 본 논문에서는 트리 구조의 퍼지 뉴럴 네트워크를 이용하여 발전 출력을 예측하고자 한다. 트리 구조의 퍼지 뉴럴 네트워크는 퍼지 뉴런을 노드로 선택하고 관련 입력을 최적으로 선택하여 규칙 수를 줄이는 장점이 있다. 네트워크의 최적화를 위해 2 단계 최적화 방법이 사용된다. 유전 알고리즘은 최적의 노드와 리프를 선택하여 네트워크의 이진 구조를 최적화 한 다음 랜덤 신호 기반 학습을 수행하여 최적화 된 이진 연결을 단위 구간에서 미세 학습한다. 제안 된 방법의 유용성을 검증하기 위해 UCI Machine Learning Repository Database에서 얻은 복합 화력 발전소 데이터를 사용한다.

불확실성을 고려한 퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering with Uncertainty)

  • 박건준;김용갑;황근창
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.173-181
    • /
    • 2017
  • 산업이 발달함에 따라서 빅데이터가 무수히 생산되고 있으며 이에 따라서 데이터에 내재된 불확실성도 증가하고 있다. 본 논문에서는 데이터에 내재된 불확실성을 다루기 위해 interval type-2 퍼지 클러스터링 방법을 제안하고 이를 이용하여 퍼지뉴럴네트워크를 설계하고 최적화한다. 제안한 클러스터링 방법을 이용하여 퍼지 규칙을 설계하고 학습을 수행한다. 최적화하는 방법으로서 유전자 알고리즘을 이용하고 모델 파라미터들을 최적 탐색한다. 실험에서는 두 가지 패턴 분류를 시행하였으며 두 가지 실험 모두 우수한 패턴 인식 결과를 보여준다. 제안한 네트워크는 증가하는 불확실성을 다룰 수 있는 방법을 제공할 수 있을 것이다.

RBF 뉴럴 네트워크 기반 정적 상황 인지에 관한 연구: PSO 및 DE 비교 해석 (A Study on RBFNN-Based Static Situation Awareness : A Comparative Analysis of PSO and DE Algorithms)

  • 나현석;김욱동;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1954-1955
    • /
    • 2011
  • 본 연구에서는 교육용으로 제작된 NXT 장비에 설치된 Light 센서, Ultrasonic센서, Sound센서를 이용하여 각 거리(10~60cm)에서 5cm 간격으로 각 센서 데이터를 취득하였다. 데이터 취득은 NI(National Instrument)에서 제공하는 LabVIEW Software를 사용하여 각 거리마다 100개의 셈플 데이터를 취득하였다. 취득한 데이터는 제안한 모델의 입력 데이터로 사용하여 실제거리와 모델 출력과의 정확도를 평가 하였다. 본 연구에서 제안한 모델은 지능형 모델 중 퍼지추론 기반의 최적 다항식 RBF 뉴럴네트워크(Radial Basis Function Neural Network; RBFNN)를 설계한다. 제안된 RBFNN은 기존 RBF 뉴럴네트워크를 기반으로 한 구조로, 퍼지추론 메커니즘의 기능적 모듈 동작 특성을 갖도록 정규화 부분을 추가하고, 은닉층과 출력층 사이의 연결가중치를 기존 상수항에서 선형식(first order)으로 확장한 형태이다. 또한 최적의 알고리즘인 PSO(Paticle Swarm Optimization)와 DE(Differential Evolution)을 이용하여 제안된 모델의 파라미터들을 동정하여 성능을 비교, 분석 하였다.

  • PDF

하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조 (Algorithm and Architecture of Hybrid Fuzzy Neural Networks)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

뉴로-퍼지를 이용한 스펙클 제거 (Speckle Reduction based on Neuro-Fuzzy Technique)

  • 길세기;전유용;오형석;서촌민박;권장우;이상민
    • 전기전자학회논문지
    • /
    • 제12권3호
    • /
    • pp.158-166
    • /
    • 2008
  • 의용 초음파 장비는 X-Ray, CT, MRI 등 다른 의료 장비보다 휴대성과 안전성면에서는 장점이 있지만 진단 시 해상도와 화질 저하를 유발하는 스펙클이 생기는 단점이 있다. 그러나 단순한 스펙클 잡음의 제거는 경계선 정보의 손실을 발생시킬 수도 있다. 이에 본 논문에서는 효과적인 스펙클 제거와 손실 없는 경계선 검출을 위해 뉴럴네트워크와 퍼지 클러스터링을 이용한 뉴로-퍼지 스펙클 제거 방법을 제안하였다. 제안된 방법은 입력된 의용 초음파 영상에 대해 먼저 퍼지 클러스터링을 적용하여 세 영역으로 나누고 이후 각 영역별로 별도의 뉴럴 네트워크를 적용하는 방법이다. 실제 실험 및 기존 방법들과의 정성적?정량적 비교 분석을 통해 제안 방법의 유용성을 검증하였다.

  • PDF

유전 알고리즘의 기호코딩과 정보입자화를 이용한 퍼지집합 기반 다항식 뉴럴네트워크의 최적 설계 (Optimal Design of Fuzzy Set-based Polynomial Neural Networks Using Symbolic Gene Type and Information Granulation)

  • 이인태;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.217-219
    • /
    • 2006
  • 본 연구는 정보입자와 유전알고리즘의 기호코딩을 통해 퍼지집합 기반 다항식 뉴럴네트워크(IG based gFSPNN)의 최적 설계 제안한다. 기존의 Furry Srt-based Polynomial Neural Networks의 최적설계를 위해 유전자 알고리즘의 이진코딩을 사용하였다. 이지코딩은 스티링 길이 때문에 연산시간이 급격히 증가되는 현상과 해밍절벽(Hamming Cliff)에 따른 급격한 비트변환이 힘들다는 단점이 내제 하였다. 이에 본 논문에서는 스티링 길이와 해밍절벽에 따른 문제를 해결 하기위해 기호코딩을 사용하였다._데이터들의 특성을 모델에 반영하기 위해 Hard C-Means(HCM)을 결합한 Information Granulation(IG)을 사용하여 최적모델 구축 속도를 빠르게 하였다. 실험적 예제를 통하여 제안된 모델의 성능을 평가한다.

  • PDF

유전자 알고리즘의 기호 코딩을 이용한 퍼지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용 (Design of Fuzzy Polynomial neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software System)

  • 이인태;오성권;최정내
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.113-116
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 기호코팅을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴 네트워크 (Genetic Algorithms-based Fuzzy Polynomial Neural Networks ; gFPNN)의 모델을 제안한다. 유전자 알고리즘에는 이진코딩, 기호코팅, 실수코딩이 있다. 제안된 모델은 스트링의 길이에 따른 해밍절벽을 기호코딩으로 극복하였다. gFPNN에 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 그리고 규칙의 후반부는 간략, 선형, 이차식 그리고 변형된 이차식 함수에 의해 설계된다. 실험적 예제를 통하여 제안된 모델의 성능이 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF

PSO 기반 최적화 다항식 RBF 뉴럴 네트워크 (Optimized Polynomial RBF Neural Networks Based on PSO Algorithm)

  • 백진열;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1887-1888
    • /
    • 2008
  • 본 논문에서는 퍼지 추론 기반의 다항식 RBF 뉴럴네트워크(Polynomial Radial Basis Function Neural Network; pRBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델은 "IF-THEN" 형식으로 기술되는 퍼지 규칙에 의해 조건부, 결론부, 추론부의 기능적 모듈로 표현된다. 조건부의 입력공간 분할에는 HCM 클러스터링에 기반을 두어 구조가 결정되며, 기존에 주로 사용된 가우시안 함수를 RBF로 이용하고, 원뿔형태의 선형 함수를 제안한다. 또한 입력공간 분할시 데이터 집합의 특성을 반영하기 위해 분포상수를 각 입력마다 고려하여 설계함으로서 공간 분할의 정밀성을 높인다. 결론부에서는 기존 상수항의 연결가중치를 다항식 형태로 표현하는 pRBFNN을 제안한다. 제안한 모델의 성능을 평가하기 위해 Box와 Jenkins가 사용한 가스로 시계열 데이터를 적용하고, 기존 모델과의 근사화와 일반화 능력에 대하여 토의한다.

  • PDF