최근 시대의 흐름에 따라 많은 에너지의 사용으로 여러 가지 에너지원이 필요로 하게 되면서 지금까지는 석탄, 석유 등 매장된 에너지원을 사용하고 있지만, 최근 에너지 위기와 여러 가지의 환경문제가 대두 되면서 세계적으로 새로운 청정에너지원을 필요로 하게 되었다. 그 결과 태양광, 풍력, 지열 등 여러 가지의 신재생에너지원이 대두되게 되었으며, 여러 가지의 신재생에너지원 중 주목받고 있는 풍력에너지에 대한 연구가 현재 활발히 진행 중에 있다. 풍력발전은 바람의 에너지를 이용해 블레이드에 연결된 터빈을 구동하여 전기 에너지를 얻는 방식이며, 아직까지는 많은 곳에서 사용될 만큼 생산이 되지 않고 있지만 조만간 많은 곳에서 쓰일 것으로 예상된다. 풍력발전 시스템이 전력시장에서 차지하는 비중이 점차 증가하고 있으나 풍향, 풍속 등의 변화로 인하여 안정적인 발전 출력을 항상 보장할 수 없다. 그러므로 본 논문에서는 실제 풍력발전기로부터 수집된 풍향, 풍속, 발전출력 데이터를 처리하여 데이터베이스를 구축하고, 퍼지 뉴런에 기반한 퍼지-뉴럴 네트워크 예측 모델을 이용하여 풍력발전 출력을 예측하였다.
전력설비에 대한 부분방전 패턴인식은 결함의 차이에 따라 다양한 패턴의 차이를 보이고 있으며, 신경회로망을 비롯한 다양한 패턴인식 기법들이 적용되고 있다. 본 논문에서는 이의 일환으로 퍼지 집합 기반 퍼지뉴럴네트워크를 설계하여 초고압 XLPE 케이블 절연접속함의 모의 결합에 대해 부분방전 신호를 패턴인식하고자 한다. 부분방전 신호는 보이드 방전, 코로나 방전, 노이즈의 3개 클래스로 분류하게 되며, PRPDA 방법을 통해 556개의 입력 벡터와 3개의 출력 벡터를 가지며 총 120개의 패턴수를 가진다.
오늘날 복합 화력 발전소는 전력 생산을 위해 많이 사용되고 있고, 최근에는 운전 매개 변수를 기반으로 발전 출력을 예측하는 것이 주요 관심사이다. 본 논문에서는 복합 화력 발전소의 출력을 예측하기 위해 컴퓨터 지능 기법을 이용하는 방법을 제시한다. 컴퓨터 지능 기술은 지속적으로 발전되어 많은 실제 문제에 적용되어 왔다. 본 논문에서는 트리 구조의 퍼지 뉴럴 네트워크를 이용하여 발전 출력을 예측하고자 한다. 트리 구조의 퍼지 뉴럴 네트워크는 퍼지 뉴런을 노드로 선택하고 관련 입력을 최적으로 선택하여 규칙 수를 줄이는 장점이 있다. 네트워크의 최적화를 위해 2 단계 최적화 방법이 사용된다. 유전 알고리즘은 최적의 노드와 리프를 선택하여 네트워크의 이진 구조를 최적화 한 다음 랜덤 신호 기반 학습을 수행하여 최적화 된 이진 연결을 단위 구간에서 미세 학습한다. 제안 된 방법의 유용성을 검증하기 위해 UCI Machine Learning Repository Database에서 얻은 복합 화력 발전소 데이터를 사용한다.
산업이 발달함에 따라서 빅데이터가 무수히 생산되고 있으며 이에 따라서 데이터에 내재된 불확실성도 증가하고 있다. 본 논문에서는 데이터에 내재된 불확실성을 다루기 위해 interval type-2 퍼지 클러스터링 방법을 제안하고 이를 이용하여 퍼지뉴럴네트워크를 설계하고 최적화한다. 제안한 클러스터링 방법을 이용하여 퍼지 규칙을 설계하고 학습을 수행한다. 최적화하는 방법으로서 유전자 알고리즘을 이용하고 모델 파라미터들을 최적 탐색한다. 실험에서는 두 가지 패턴 분류를 시행하였으며 두 가지 실험 모두 우수한 패턴 인식 결과를 보여준다. 제안한 네트워크는 증가하는 불확실성을 다룰 수 있는 방법을 제공할 수 있을 것이다.
본 연구에서는 교육용으로 제작된 NXT 장비에 설치된 Light 센서, Ultrasonic센서, Sound센서를 이용하여 각 거리(10~60cm)에서 5cm 간격으로 각 센서 데이터를 취득하였다. 데이터 취득은 NI(National Instrument)에서 제공하는 LabVIEW Software를 사용하여 각 거리마다 100개의 셈플 데이터를 취득하였다. 취득한 데이터는 제안한 모델의 입력 데이터로 사용하여 실제거리와 모델 출력과의 정확도를 평가 하였다. 본 연구에서 제안한 모델은 지능형 모델 중 퍼지추론 기반의 최적 다항식 RBF 뉴럴네트워크(Radial Basis Function Neural Network; RBFNN)를 설계한다. 제안된 RBFNN은 기존 RBF 뉴럴네트워크를 기반으로 한 구조로, 퍼지추론 메커니즘의 기능적 모듈 동작 특성을 갖도록 정규화 부분을 추가하고, 은닉층과 출력층 사이의 연결가중치를 기존 상수항에서 선형식(first order)으로 확장한 형태이다. 또한 최적의 알고리즘인 PSO(Paticle Swarm Optimization)와 DE(Differential Evolution)을 이용하여 제안된 모델의 파라미터들을 동정하여 성능을 비교, 분석 하였다.
In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.
의용 초음파 장비는 X-Ray, CT, MRI 등 다른 의료 장비보다 휴대성과 안전성면에서는 장점이 있지만 진단 시 해상도와 화질 저하를 유발하는 스펙클이 생기는 단점이 있다. 그러나 단순한 스펙클 잡음의 제거는 경계선 정보의 손실을 발생시킬 수도 있다. 이에 본 논문에서는 효과적인 스펙클 제거와 손실 없는 경계선 검출을 위해 뉴럴네트워크와 퍼지 클러스터링을 이용한 뉴로-퍼지 스펙클 제거 방법을 제안하였다. 제안된 방법은 입력된 의용 초음파 영상에 대해 먼저 퍼지 클러스터링을 적용하여 세 영역으로 나누고 이후 각 영역별로 별도의 뉴럴 네트워크를 적용하는 방법이다. 실제 실험 및 기존 방법들과의 정성적?정량적 비교 분석을 통해 제안 방법의 유용성을 검증하였다.
본 연구는 정보입자와 유전알고리즘의 기호코딩을 통해 퍼지집합 기반 다항식 뉴럴네트워크(IG based gFSPNN)의 최적 설계 제안한다. 기존의 Furry Srt-based Polynomial Neural Networks의 최적설계를 위해 유전자 알고리즘의 이진코딩을 사용하였다. 이지코딩은 스티링 길이 때문에 연산시간이 급격히 증가되는 현상과 해밍절벽(Hamming Cliff)에 따른 급격한 비트변환이 힘들다는 단점이 내제 하였다. 이에 본 논문에서는 스티링 길이와 해밍절벽에 따른 문제를 해결 하기위해 기호코딩을 사용하였다._데이터들의 특성을 모델에 반영하기 위해 Hard C-Means(HCM)을 결합한 Information Granulation(IG)을 사용하여 최적모델 구축 속도를 빠르게 하였다. 실험적 예제를 통하여 제안된 모델의 성능을 평가한다.
본 논문은 소프트웨어 공정에 대하여 기호코팅을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴 네트워크 (Genetic Algorithms-based Fuzzy Polynomial Neural Networks ; gFPNN)의 모델을 제안한다. 유전자 알고리즘에는 이진코딩, 기호코팅, 실수코딩이 있다. 제안된 모델은 스트링의 길이에 따른 해밍절벽을 기호코딩으로 극복하였다. gFPNN에 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 그리고 규칙의 후반부는 간략, 선형, 이차식 그리고 변형된 이차식 함수에 의해 설계된다. 실험적 예제를 통하여 제안된 모델의 성능이 근사화 능력과 일반화 능력이 우수함을 보인다.
본 논문에서는 퍼지 추론 기반의 다항식 RBF 뉴럴네트워크(Polynomial Radial Basis Function Neural Network; pRBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델은 "IF-THEN" 형식으로 기술되는 퍼지 규칙에 의해 조건부, 결론부, 추론부의 기능적 모듈로 표현된다. 조건부의 입력공간 분할에는 HCM 클러스터링에 기반을 두어 구조가 결정되며, 기존에 주로 사용된 가우시안 함수를 RBF로 이용하고, 원뿔형태의 선형 함수를 제안한다. 또한 입력공간 분할시 데이터 집합의 특성을 반영하기 위해 분포상수를 각 입력마다 고려하여 설계함으로서 공간 분할의 정밀성을 높인다. 결론부에서는 기존 상수항의 연결가중치를 다항식 형태로 표현하는 pRBFNN을 제안한다. 제안한 모델의 성능을 평가하기 위해 Box와 Jenkins가 사용한 가스로 시계열 데이터를 적용하고, 기존 모델과의 근사화와 일반화 능력에 대하여 토의한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.