• Title/Summary/Keyword: 퍼지추론기

Search Result 188, Processing Time 0.021 seconds

Seismic Response Control of Cable-Stayed Bridge using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 사장교의 지진응답제어)

  • Park, Kwan-Soon;Koh, Hyun-Moo;Ok, Seung-Yong;Seo, Chung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.51-62
    • /
    • 2004
  • Fuzzy supervisory control technique for the seismic response control of cable-stayed bridges subject to earthquakes is studied. The proposed technique is a hybrid control method, which adopts a hierarchical structure consisting of several sub-controllers and a fuzzy supervisor. Sub-controllers are independently designed to reduced the responses to be controlled of a cable-stayed bridge, and a fuzzy supervisor achieves improved seismic control performance by tuning the pre-designed sub-controllers. It is realized by converting static gains of the sub-controllers into time-varying dynamic gains through the fuzzy inference mechanism. To evaluate the feasibility of the proposed technique, the benchmark control problem of cable-stayed bridge proposed by Dyke et al. is adopted. The control variables for the seismic response control of the cable-stayed bridge are determined to be t도 shear forces and bending moments at the base of the towers, the longitudinal displacements at the top of the towers, the relative displacements between the deck and the tower, and the tensions in the stay cables. Comparative results between the fuzzy supervisory controller and LQG controller demonstrate the effectiveness of the proposed control technique.

Design of the Call Admission Control System of the ATM Networks Using the Fuzzy Neural Networks (퍼지 신경망을 이용한 ATM망의 호 수락 제어 시스템의 설계)

  • Yoo, Jae-Taek;Kim, Choon-Seop;Kim, Yong-Woo;Kim, Young-Han;Lee, Kwang-Hyung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2070-2079
    • /
    • 1997
  • In this paper, we proposed the FNCAC (fuzzy neural call admission control) scheme of the ATM networks which used the benefits of fuzzy logic controller and the learning abilities of the neural network to solve the call admission control problems. The new call in ATM networks is connected if QoS(quality of service) of the current calls is not affected due to the connection of a new call. The neural network CAC(call admission control) system is predictable system because the neural network is able to learn by the input/output pattern. We applied the fuzzy inference on the learning rate and momentum constant for improving the learning speed of the fuzzy neural network. The excellence of the proposed algorithm was verified using measurement of learning numbers in the traditional neural network method and fuzzy neural network method by simulation. We found that the learning speed of the FNCAC based on the fuzzy learning rules is 5 times faster than that of the CAC method based on the traditional neural network theory.

  • PDF

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • Park, Gyei-Kark;Seo, Ki-Yeol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.417-423
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer s steering instruction is achieved via ableman. We embody ableman s suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer s linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman s experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • 박계각;서기열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer's steering instruction is achieved via ableman. We embody ableman's suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer's linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman's experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

SVM Classifier for the Detection of Ventricular Fibrillation (SVM 분류기를 통한 심실세동 검출)

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.27-34
    • /
    • 2005
  • Ventricular fibrillation(VF) is generally caused by chaotic behavior of electrical propagation in heart and may result in sudden cardiac death. In this study, we proposed a ventricular fibrillation detection algorithm based on support vector machine classifier, which could offer benefits to reduce the teaming costs as well as good classification performance. Before the extraction of input features, raw ECG signal was applied to preprocessing procedures, as like wavelet transform based bandpass filtering, R peak detection and segment assignment for feature extraction. We selected input features which of some are related to the rhythm information and of others are related to wavelet coefficients that could describe the morphology of ventricular fibrillation well. Parameters for SVM classifier, C and ${\alpha}$, were chosen as 10 and 1 respectively by trial and error experiments. Each average performance for normal sinus rhythm ventricular tachycardia and VF, was 98.39%, 96.92% and 99.88%. And, when the VF detection performance of SVM classifier was compared to that of multi-layer perceptron and fuzzy inference methods, it showed similar or higher values. Consequently, we could find that the proposed input features and SVM classifier would one of the most useful algorithm for VF detection.

Development of Fuzzy Logic-Based Diagnosis Algorithm for Fault Detection Of Dual-Type Temperature Sensor for Gas Turbine System (가스터빈용 듀얼타입 온도센서의 고장검출을 위한 퍼지로직 기반의 진단 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Due to the recent increase in new and renewable energy, gas turbine generators start and stop every day to supply high-quality power, and accordingly, the life span of high-temperature parts is shortened and the failure of combustion chamber temperature sensors increases. Therefore, in this study, we proposed a fuzzy logic-based failure diagnosis algorithm that can accurately diagnose and systematically detect the failure of the sensor when the dual temperature sensor used for gas turbine control fails, and to confirm the usefulness of the proposed algorithm We tried to confirm the usefulness of the proposed algorithm by performing various simulations under the matlab/simulink environment.

Auto Temperature-Controlled System using Adaptive Fuzzy Controller for Gas Furnace (적응 퍼지 제어를 이용한 가스로 자동온도조절 시스템)

  • Kwon Hyeog-Soong;Kim Seon-Jong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.149-154
    • /
    • 2006
  • In this paper, for auto temperature-controlled, we developed a system that an adaptive fuzzy controller using fuzzy control rule base, fuzzy variable and fuzzy inference can get same results as an expert of temperature -controlled gas furnace system by experience and obtained a good result by experiment. It's results showed that temperature error is less than ${\pm}2^{\circ}C$ and widely used in the area of industrial fields. For measurement of error rate of sintered ceramic products between the manual system and the proposed system, we tested two times sample A and B respectively. We verified the improvement of error rate was mean 50.5% and 48.4% for each sample A and B. Through the experiments, we confirmed that it has very superior performance compared with the conventional gas furnace system by manual.

  • PDF

Design of Hydraulic & Control System for the Disc Spinning Machine (디스크 스피닝 성형기의 유압 및 제어시스템 설계)

  • Gang, Jung-Sik;Park, Geun-Seok;Gang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.

Practical Civil UAV Engine Control using High-gain Observer (고이득 관측기를 이용한 실용형 민수 무인항공기 엔진 제어)

  • Jung, Byeong-In;Ahn, Dong-Man;Hong, Gyo-Young;Hong, Seung-Beom;Min-Seok, Jie
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1187-1193
    • /
    • 2011
  • In this paper, proposed controller preventing compressor surge and reducing the acceleration time of the fuel flow control system for turbo-jet engine. Turbo-jet engine controller is designed by applying fuzzy PID control algorithm and high-gain observer. Observer is used to estimate to compressor rotation speed of turbo-jet engine. Result of fuzzy inference is used as the fuel flow control inputs for preventing compressor surge and flame-out in turbo-jet engine. The controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller.

A Study on Dimming Control of Fluorescent Lamp with the Aid of Fuzzy Inference Method (퍼지추론방법에 의한 형광등의 디밍 제어에 대한 연구)

  • Baek, Jin-Yeol;Lee, In-Tae;Oh, Sung-Kwun;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.911-917
    • /
    • 2008
  • In this paper. we introduce and investigate new architectures and comprehensive design methodologies of intelligent dimming converter and evaluate the proposed model and the system through a series of numeric experiments. The intelligent dimming converter is developed by using the regression polynomial fuzzy model. In this paper, we put emphasis on the design of electronic ballast based on intelligent dimming converter and the energy saving according to the day-light and the user setting by applying the intelligent model to a fluorescent lamp. We show the superiority of the proposed intelligent dimming converter through the evaluation of performance with conventional electronic ballast by applying the intelligent model to real systems.