• Title/Summary/Keyword: 퍼지연상기억장치

Search Result 6, Processing Time 0.017 seconds

Shot Transition Detection based on Improved Fuzzy Association Memory (개선된 퍼지연상기억장치에 기반한 장면전환 검출)

  • Lee, Dong-Ha;Go, Il-Ju;Kim, Gye-Yeong;Choe, Hyeong-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.565-572
    • /
    • 2002
  • 학습과 추론을 위하여 유용한 방법으로 퍼지연상기억장치가 있다. 본 논문에서는 보다 효과적으로 추론결과를 유도하기 위하여 퍼지연상기억장치를 학습하는 단계에서 오류 역전파를 통하여 노드들 사이의 연결가중치를 재조정하는 방법과 퍼지규칙들을 간결화하는 방법을 제안한다. 제안된 방법은 비디오 데이타의 장면전환을 검출하는 분야에 적용하여 성능평가를 수행한다.

Word Boundary Detection of Voice Signal Using Recurrent Fuzzy Associative Memory (순환 퍼지연상기억장치를 이용한 음성경계 추출)

  • 마창수;김계영;최형일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.235-237
    • /
    • 2003
  • 본 논문에서는 음성인식을 위한 전처리 단계로 음성인식의 대상을 찾아내는 음성경계 추출에 대하여 기술한다. 음성경계 추출을 위한 특징 벡터로는 시간 정보인 RMS와 주파수 정보인 MFBE를 사용한다. 사용하는 알고리즘은 학습을 통해 규칙을 생성하는 퍼지연상기억장치에 음성의 시간 정보를 적용하기 위해 순환노드를 추가한 새로운 형태의 순환 퍼지연상기억장치를 제안한다.

  • PDF

Word Boundary Detection of Voice Signal Using Recurrent Fuzzy Associative Memory (순환 퍼지연상기억장치를 이용한 음성경계 추출)

  • Ma Chang-Su;Kim Gye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1171-1179
    • /
    • 2004
  • We describe word boundary detection that extracts the boundary between speech and non-speech. The proposed method uses two features. One is the normalized root mean square of speech signal, which is insensitive to white noises and represents temporal information. The other is the normalized met-frequency band energy of voice signal, which is frequency information of the signal. Our method detects word boundaries using a recurrent fuzzy associative memory(RFAM) that extends FAM by adding recurrent nodes. Hebbian learning method is employed to establish the degree of association between an input and output. An error back-propagation algorithm is used for teaming the weights between the consequent layer and the recurrent layer. To confirm the effectiveness, we applied the suggested system to voice data obtained from KAIST.

A Collaborative Recommendation Method based on Fuzzy Associative Memory (퍼지연상기억장치에 기반한 협력 추천 방법)

  • 이동섭;고일주;김계영
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1054-1061
    • /
    • 2004
  • At recent, people can easily access to information by Internet to be rapidly evolving. And also, the amount is rapidly increasing. So the techniques, to automatically extract the required information are very important to reduce the time and the effort for retrieving information. In this paper, we describe a collaborative filtering system for automatically recommending high-quality information to users with similar interests on arbitrarily narrow information domains. It asks a user to rate a gauge set of items. It then evaluates the user's rates and suggests a recommendation set of items. We interpret the process of evaluation as an inference mechanism that maps a gauge set to a recommendation set. We accomplish the mapping with FAM (Fuzzy Associative Memory). We implemented the suggested system in a Web server and tested its performance in the domain of retrieval of technical papers, especially in the field of information technologies. The experimental results show that it may provide reliable recommendations.

Shot Boundary Detection of Video Data Based on Fuzzy Inference (퍼지 추론에 의한 비디오 데이터의 샷 경계 추출)

  • Jang, Seok-Woo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.611-618
    • /
    • 2003
  • In this paper, we describe a fuzzy inference approach for detecting and classifying shot transitions in video sequences. Our approach basically extends FAM (Fuzzy Associative Memory) to detect and classify shot transitions, including cuts, fades and dissolves. We consider a set of feature values that characterize differences between two consecutive frames as input fuzzy sets, and the types of shot transitions as output fuzzy sets. The inference system proposed in this paper is mainly composed of a learning phase and an inferring phase. In the learning phase, the system initializes its basic structure by determining fuzzy membership functions and constructs fuzzy rules. In the inferring phase, the system conducts actual inference using the constructed fuzzy rules. In order to verify the performance of the proposed shot transition detection method experiments have been carried out with a video database that includes news, movies, advertisements, documentaries and music videos.

Personality Learning Techniques for Intelligent Information System (지능형 정보시스템을 위한 개인성 학습 기법)

  • 김호준;박정선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.310-312
    • /
    • 2001
  • 본 연구에서는 정보시스템의 지능형 인터페이스를 위하여 사용자의 개인성을 학습하는 방법론으로서 신경망 이론의 활용가능성을 고찰한다. 입력형식의 유연성, 입력의 왜곡 및 소실가능성 등 시스템의 실용성과 연관하여 나타나는 자료의 특성을 수용하기 위하여, 학습과정에서 신호표현의 다양화와 부분 패턴의 의한 분류 기능 등을 개선한 신경망모델을 제안한다. 이를 위하여 퍼지 양방향 연상기억장치와 구간연산으로 일반화된 다층 신경망모델을 결합하여 혼합형 분류모형을 제시하고 그 유용성을 고찰한다. 실험은 전공분야 선택을 위한 개인의 적성분석시스템을 대상으로 구현하였다.

  • PDF