• Title/Summary/Keyword: 퍼지생성규칙

Search Result 186, Processing Time 0.022 seconds

A Bayesian Validation Method based on Decision Tree for Evaluating Fuzzy Clusters of Gene Expression Data (유전자 발현 데이터의 퍼지 클러스터 평가를 위한 결정트리 기반의 베이지안 검증방법)

  • 유지호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.262-264
    • /
    • 2004
  • 퍼지 클러스터링 방법은 일반적인 클러스터링 방법과는 달리 하나의 샘플이 다수의 집단에 속할 수 있으며 그 속하는 정도를 표현하여 보다 유연한 클러스터 분할의 분석을 가능하게 한다. 유전자 발현 데이터는 노이즈가 많고 공통된 기능을 가진 유전자들의 집단이 존재하기 때문에 퍼지 클러스터링을 사용하면 더욱 효율적으로 분석할 수 있다. 이러한 퍼지 클러스터링 방법에 있어서 중요한 것은 얼마나 분할이 정확하게 이루어졌으며 실제 데이터가 가지고 있는 분할과 결과가 얼마나 유사한가이다. 본 논문에서는 효과적인 유전자 클러스터의 평가를 위하여 베이지안 검증 방법을 제시하고, 결정트리로 생성된 규칙에 의하여 각 데이터의 특성에 따라 유연하게 검증하는 방법을 제안한다. 다양한 유전자 발현 데이터를 퍼지 c-means 알고리즘을 이용하여 클러스터링하고 제안하는 방법으로 검증한 결과, 그 유용성을 확인할 수 있었다.

  • PDF

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (Subtractive Clustering 알고리즘을 이용한 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.239-240
    • /
    • 2008
  • 본 논문에서는 Subtractive clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network (FRBFNN)의 규칙 수를 자동적으로 생성하는 방법을 제시한다. FRBFNN은 멤버쉽 함수로써 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 Fuzzy C-Means clustering 알고리즘에서 사용하는 거리에 기한 멤버쉽 함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정하는 구조이다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 하는 Subtractive clustering 알고리즘을 사용하여 퍼지 규칙의 수와 같은 의미를 갖는 분할할 입력공간의 수와 분할된 입력공간의 중심값을 동정하며, Least Square Estimator (LSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정 한다.

  • PDF

Part-of-speech Tagging using Probability and Rules (확률과 규칙을 사용한 품사 태깅)

  • Shin, Sang-Hyun;Lee, Geun-Bae;Hong, Nam-Hee;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.318-321
    • /
    • 1994
  • 한국어에 있어서 품사 태깅은 형태소 분석결과의 모호성을 제거하는 것으로, 기존의 방법을 보면, 확률을 이용하는 방법, 퍼지망을 이용하는 방법, 신경망을 이용하는 방법등 다양하다. 현재의 주류가 확률을 이용한 방법이다. 하지만, 이 방법은 제한된 윈도우 크기와 품사사이의 관계만을 이용한다는 한계점을 지니고 있다. 본 논문에서는 확률을 이용한 결과에, 확률에서 다루지 못하는 범위에 대하여 자동 학습된 규칙을 추가로 적용하여 이 한계점을 극복한다. 규칙 적용시 윈도우 크기를 임의로 정할 수 있고, 품사사이의 관계외에 어절사이의 관계도 고려할 수 있으므로 확률적 방법이 다루지 못하는 부분에 대하여 어휘단계에서의 교정이 가능하게 된다. 현재 20가지 정도의 규칙을 수작업 코딩하여 사용한 결과 확률적 방법의 성능을 3% 정도 향상시킬 수 있었으며, 앞으로 규칙생성을 자동학습할 경우 더 큰 성능향상을 기대해 볼 수 있다.

  • PDF

Intelligent Motion Planning System for an Autonomous Mobil Robot (자율 이동 로봇을 위한 지능적 운동 계획 시스템)

  • 김진걸;김정찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1503-1517
    • /
    • 1994
  • Intelligent Motion Planning System(IMPS) is presented for a robot to achieve an efficient path toward the given target point in two dimensional unknown environment is constructed with unrestricted obstacle shapes. IMPS consists of three components for making intelligent motion. These components are real-time motion planning algorithm based on a discontinous boundary method, fuzzy neural network decision system for heuristic knowledge representation, and world modeling with forgetting and reinforcing memory cells. First of all, in real-time motion planning algorithm, the behavior-based architectural method is used to generate subgoal. A behavior generates a subgoal independently by using the method of discontinuous boundary in sensed area. The discontinuous boundary method is a new proposed fast obstacle avoidance algorithm. The second component is fuzzy neural network decision system for accomplishing the subgoal. The heuristic rules are imbedded on the fuzzy neural network to make an intelligent decision. The last one is a forgetting, reinforcing memory technique for the construction of external world map. The activation values of all activated memory cells in grid space are decreased monotonically and after all they are burned out. Therefore, after sufficient journey, robot can have a stationary world map even if the dynaic obstacles exist. Using the IMPS, several simulations show the efficient achievement of target point in unknown enviroment with obstcles of various shapes.

  • PDF

Design AND IMPLEMENTATION of A News letter system using fuzzy association rules (퍼지 연관규칙을 이용한 뉴스레터 시스템 설계 및 구현)

  • 정연홍;박우수;박규석
    • Journal of Internet Computing and Services
    • /
    • v.3 no.5
    • /
    • pp.41-49
    • /
    • 2002
  • Web mining can be broadly defined as the discovery and analysis of useful information from the World Wide Web. In this paper. we tried to analyze a user access pattern and designed a system which can supply useful information to users through the web mining, The proposed system can search the information of users pattern through the web site and news letters, and pass through classification of category through filtering, The fuzzy association rules are applied to the users who access recently, to each category that generated though these processes, and compares the generated sets to each users-access pages set, and it can send appropriate news letter to each user.

  • PDF

A Forged Report Filtering Scheme in Sensor Networks Based on Fuzzy Logic and Commutative Cipher (센서 네트워크에서 퍼지 로직과 가환 암호를 기반으로 하는 위조 보고서 여과 기법)

  • Lee, Hae-Yeong;Jo, Dae-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.292-295
    • /
    • 2007
  • 센서 네트워크에서 공격자는 훼손된 노드들 이용하여 위조 보고서를 네트워크에 주입할 수 있다. Yang과 Lu는 이러한 위조 보고서를 전달 중에 여과하기 위하여 가환 암호 기반 여과 기법을 제안하였다. 그러나 이 기법에서는 클러스터 헤드가 훼손된 경우에 위조 보고서를 전달 중에 여과할 수 없는 문제가 있다. 본 논문에서는 클러스터 헤드 훼손 여부에 관계없이 보고서를 전달 중에 여과할 수 있는 퍼지 로직 및 가환 암호 기반 위조 보고서 여과기법을 제안한다. 기본적으로 제안된 방법은 가환 암호를 기반으로 감지 보고서를 생성 및 검증하며, 보조 검증 수단으로 대칭 암호를 사용한다. 에너지 소비 절감을 위하여 퍼지 규칙 기반 시스템이 계산 비용이 큰 가환 암호 검증의 확률과 보조 검증 수단 사용 여부를 결정한다.

  • PDF

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • 박영진;황보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.283-287
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시접에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측)

  • Park, Young-Jin;Choi, Jae-Gyun;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Extracting Input Features and Fuzzy Rules for forecasting KOSPI Stock Index Based on NEWFM (KOSPI 예측을 위한 NEWFM 기반의 특징입력 및 퍼지규칙 추출)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.129-135
    • /
    • 2008
  • This paper presents a methodology to forecast KOSPI index by extracting fuzzy rules based on the neural network with weighted fuzzy membership functions (NEWFM) and the minimized number of input features using the distributed non-overlap area measurement method. NEWFM classifies upward and downward cases of KOSPI using the recent 32 days of CPPn,m (Current Price Position of day n for n-1 to n-m days) of KOSPI. The five most important input features among CPPn,m and 38 wavelet transformed coefficients produced by the recent 32 days of CPPn,m are selected by the non-overlap area distribution measurement method. For the data sets, from 1991 to 1998, the proposed method shows that the average of forecast rate is 67.62%.

  • PDF

A Neuro-Fuzzy Modeling using the Hierarchical Clustering and Gaussian Mixture Model (계층적 클러스터링과 Gaussian Mixture Model을 이용한 뉴로-퍼지 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.512-519
    • /
    • 2003
  • In this paper, we propose a neuro-fuzzy modeling to improve the performance using the hierarchical clustering and Gaussian Mixture Model(GMM). The hierarchical clustering algorithm has a property of producing unique parameters for the given data because it does not use the object function to perform the clustering. After optimizing the obtained parameters using the GMM, we apply them as initial parameters for Adaptive Network-based Fuzzy Inference System. Here, the number of fuzzy rules becomes to the cluster numbers. From this, we can improve the performance index and reduce the number of rules simultaneously. The proposed method is verified by applying to a neuro-fuzzy modeling for Box-Jenkins s gas furnace data and Sugeno's nonlinear system, which yields better results than previous oiles.