• Title/Summary/Keyword: 퍼지분할

Search Result 223, Processing Time 0.019 seconds

Hierarchical Visualization of the Space of Facial Expressions (얼굴 표정공간의 계층적 가시화)

  • Kim Sung-Ho;Jung Moon-Ryul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.726-734
    • /
    • 2004
  • This paper presents a facial animation method that enables the user to select a sequence of facial frames from the facial expression space, whose level of details the user can select hierarchically Our system creates the facial expression space from about 2400 captured facial frames. To represent the state of each expression, we use the distance matrix that represents the distance between pairs of feature points on the face. The shortest trajectories are found by dynamic programming. The space of facial expressions is multidimensional. To navigate this space, we visualize the space of expressions in 2D space by using the multidimensional scaling(MDS). But because there are too many facial expressions to select from, the user faces difficulty in navigating the space. So, we visualize the space hierarchically. To partition the space into a hierarchy of subspaces, we use fuzzy clustering. In the beginning, the system creates about 10 clusters from the space of 2400 facial expressions. Every tine the level increases, the system doubles the number of clusters. The cluster centers are displayed on 2D screen and are used as candidate key frames for key frame animation. The user selects new key frames along the navigation path of the previous level. At the maximum level, the user completes key frame specification. We let animators use the system to create example animations, and evaluate the system based on the results.

A Rule Extraction Method Using Relevance Factor for FMM Neural Networks (FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법)

  • Lee, Seung Kang;Lee, Jae Hyuk;Kim, Ho Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.341-346
    • /
    • 2013
  • In this paper, we propose a rule extraction method using a modified Fuzzy Min-Max (FMM) neural network. The suggested method supplements the hyperbox definition with a frequency factor of feature values in the learning data set. We have defined a relevance factor between features and pattern classes. The proposed model can solve the ambiguity problem without using the overlapping test process and the contraction process. The hyperbox membership function based on the fuzzy partitions is defined for each dimension of a pattern class. The weight values are trained by the feature range and the frequency of feature values. The excitatory features and the inhibitory features can be classified by the proposed method and they can be used for the rule generation process. From the experiments of sign language recognition, the proposed method is evaluated empirically.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.51-59
    • /
    • 2019
  • Due to the exponential growth of access information on the web, the need for predicting web users' next access has increased. Various models such as markov models, deep neural networks, support vector machines, and fuzzy inference models were proposed to handle web access prediction. For deep learning based on neural network models, training time on large-scale web usage data is very huge. To address this problem, deep neural network models are trained on cluster of computers in parallel. In this paper, we investigated impact of several important spark parameters related to data partitions, shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer Perceptron model for web access prediction. Through experiments, we showed the accuracy of web access prediction based on our proposed web access prediction model. In addition, we also showed performance improvement in training time based on our spark basic parameters tuning for training Multi-Layer Perceptron model over default spark parameters configuration.