• 제목/요약/키워드: 퍼지구조모델

검색결과 200건 처리시간 0.037초

러프 집합이론을 이용한 뉴로-퍼지 모델의 최적화 (A Neuro-Fuzzy Model Optimization Using Rough Set Theory)

  • 연정흠;서재용;김용택;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.188-193
    • /
    • 2000
  • 본 논문에서는 플랜트를 위한 규칙수가 줄어든 뉴로-퍼지 모델을 얻기 위한 접근을 제안한다. 뉴로-퍼지 네트워크는 가우시안 소속함수를 가진 RBF(Radial Basis Function) 네트워크들로 구성되고 오차 역전파 학습 알고리듬에 의해 학습된다. 러프 집합 이론에서 의존도는 규칙들으 줄이는데 사용된다. 모델에서 각 규칙이 조건 소속함수 값과 플랜트의 출력 값 사이의 의온도는 플랜트를 동정하기 위하여 규칙이 얼마나 많은 공헌을 하는가를 알 수 있도록 한다. 줄어든 모델은 원래의 것으로써 동일한 성능을 유지하는 동안 선택 알고리듬은 복잡성과 구조의 잉여성을 최소화할 수 있다.

  • PDF

PSO 기반 최적화 다항식 RBF 뉴럴 네트워크 (Optimized Polynomial RBF Neural Networks Based on PSO Algorithm)

  • 백진열;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1887-1888
    • /
    • 2008
  • 본 논문에서는 퍼지 추론 기반의 다항식 RBF 뉴럴네트워크(Polynomial Radial Basis Function Neural Network; pRBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델은 "IF-THEN" 형식으로 기술되는 퍼지 규칙에 의해 조건부, 결론부, 추론부의 기능적 모듈로 표현된다. 조건부의 입력공간 분할에는 HCM 클러스터링에 기반을 두어 구조가 결정되며, 기존에 주로 사용된 가우시안 함수를 RBF로 이용하고, 원뿔형태의 선형 함수를 제안한다. 또한 입력공간 분할시 데이터 집합의 특성을 반영하기 위해 분포상수를 각 입력마다 고려하여 설계함으로서 공간 분할의 정밀성을 높인다. 결론부에서는 기존 상수항의 연결가중치를 다항식 형태로 표현하는 pRBFNN을 제안한다. 제안한 모델의 성능을 평가하기 위해 Box와 Jenkins가 사용한 가스로 시계열 데이터를 적용하고, 기존 모델과의 근사화와 일반화 능력에 대하여 토의한다.

  • PDF

연속 필기 패턴 인식을 위한 세그먼트 재조합 기반 통합 신경망 모델 (Integrated Neural Networks Model for Handwritten Pattern Recognition using Segment Recombination)

  • 장경익;류정우;박성진;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.399-401
    • /
    • 1998
  • 단일 문자 인식과 달리 연속 필기 패턴의 인식은 근본적인 필기 패턴의 형태적 특성을 충분히 고려할 필요가 있으며 다양한 형태의 패턴에 대한 특징이나 정보를 사용하여 종합적으로 판단 할 수 있는 모델의 유연성이 요구된다. 신경망의 학습 기능은 패턴의 왜곡과 잡음 등에 크게 영향을 받지 않으면서 인식에 필요한 특징의 추출이나 패턴 부류에 해당하는 노드의 반응을 스스로 학습시킬 수 있고, 다양한 형태의 정보를 쉽게 통합할 수 있는 유연한 구조를 제공한다. 퍼지 이론(Fuzzy theory)은 일정한 규칙이나 수학적 모델로 표현하기 어려운 패턴의 애매한 특징을 모델링할 수 있기 때문에 인식 대상의 총체적 특징을 추출해 신경망에 효과적으로 적용할 수 있다. 본 논문에서는 연속 필기 숫자 패턴을 인식을 위한 신경망과 퍼지 이론을 이용한 통합 신경망 모델을 제안한다.

  • PDF

퍼지 언어적 관련도에 근거한 시소러스 모델 (Thesaurus Model based on Fuzzy Linguistic Relation Degree)

  • 최명복;김민구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.72-74
    • /
    • 1998
  • 정보검색 시스템에서 시소러스는 정보항목에 대한 용어들간의 관계를 계층적 구조로 나타낸다. 따라서 정보검색 시스템에서 시소러스의 사용은 이용자의 질의에 있는 탐색어와 관련된 정보항목들을 검색할 수 있기 때문에 정보검색 시스템의 검색효율을 크게 증가시킬 수 있다. 그러나 기존의 시소러스 모델들은 용어들간의 관련 정도를 무시하거나 정량적인 수치값으로 부여하기 때문에 인간의 주관성과 부정확성을 다루는데 적합하지 않다. 용어들간 의미의 밀접한 정도(Degree of Closeness)는 모호하고 부정확한 판단에 근거하는 인간의 정성적인 측정 단위이다. 그러므로 관련정도를 정량적으로 표현하는 것은 정성적 개념을 정확한 숫자 값으로 변환하는 것이기 때문에 인간의 정성적 측정 단위를 정확하고 용이하게 정량적으로 측도하여 반영한다는 것은 어렵다. 따라서 본 논문에서는 용어들간의 관련도를 정성적으로 부여한 시소러스 모델을 제안한다. 이 시소러스 모델에서는 색인어간의 관련도를 정성적으로 표현하기 위해 퍼지 집합 이론에 근거한 언어적 설명자들을 정의한다. 언어적 설명자들은 존재론적 문제가 고려되고 다분히 인식론적인 표현에 근거한다.

  • PDF

비행체 표적식별을 위한 트리 구조의 퍼지 뉴럴 네트워크 설계 (Design of a Tree-Structured Fuzzy Neural Networks for Aircraft Target Recognition)

  • 한창욱
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1034-1038
    • /
    • 2020
  • 레이더를 통한 표적식별을 효과적으로 처리하기 위해서는 표적에 대한 정확한 신호 정보가 필요하다. 그러나 이러한 표적 신호에는 잡음이 섞여 있는 경우가 일반적이며, 이 부분에 대한 연구가 지속적으로 이루어지고 있다. 특히 표적에 대한 이미지 처리, 표적신호처리, 표적식별 등이 그 예라 할 수 있겠다. 군사적 측면으로 볼 때 표적식별 분야가 중요하므로 본 논문에서는 트리 구조의 퍼지 뉴럴 네트워크를 이용하여 비행체 표적식별에 대한 연구를 수행하였다. 비행체에 대한 반사파 데이터를 활용하여 퍼지 뉴럴 네트워크를 학습시켜 모델에 대한 최적화를 수행하였고, 최적화된 모델에 표적에 대한 테스팅 데이터를 입력하여 표적식별에 대한 실험을 수행하여 그 결과를 통해 제안된 방법의 효용성을 검증하였다.

클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석 (Design and Analysis of TSK Fuzzy Inference System using Clustering Method)

  • 오성권
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.132-136
    • /
    • 2014
  • 본 논문에서는 주어진 데이터 전처리를 통한 새로운 형태의 TSK기반 퍼지 추론 시스템을 제안한다. 제안된 모델은 주어진 데이터의 효율적인 처리를 위해 클러스터링 기법인 Fuzzy C-Means 클러스터링 방법을 이용하였다. 제안된 새로운 형태의 퍼지추론 시스템의 전반부는 FCM 을 통하여 정규화된 멤버쉽 함수와 클러스터 수를 결정하기 때문에, 멤버쉽함수의 형태 및 개수를 정의할 필요가 없어, 모델의 구조 또한 간단한 형태를 이룬다. 본 논문에서 사용된 후반부는 4가지 형태로-간략추론, 1차선형추론, 2차선형추론, 변형된 2차선형추론-가 있으며, 이는 효율적인 후반부구조를 찾는데 주도적인 역할을 한다. 또한 제안된 모델의 후반부 파라미터 계수는 Weighted Least Squares Estimation(WLSE)을 사용하여 동정하며, Least Squares Estimation(LSE)를 적용한 모델의 성능과 비교한다. 마지막으로, Boston housing 데이터를 사용하여 제안된 모델의 성능을 평가하였다.

퍼지-뉴럴네트워크 구조에 의한 비선형 공정시스템의 지능형 모델링 (Intellignce Modeling of Nonlinear Process System Using Fuzzy Neyral Networks-based Structure)

  • 오성권;노석범;남궁문
    • 한국지능시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.41-55
    • /
    • 1995
  • 본 논문에서는 복잡한 비선형 시스템의 모델링을 위해 퍼지-뉴럴 네트워크(FNNs)를 사용한 최적 동적 방법이 제안된다. 제안된 퍼지-뉴럴 모델링은 공정시스템의입축력 데이타를 이용하여 기존의 최적이론, 언어적 퍼지구현규칙, 뉴럴네트워크 등의 지능형 이론을 도입하여 시스템의 구조와 파라미터 동정을 구현한다. 이 모델링의 추론형태는 간략추론이 사용된다. 최적 모델을 얻기위해, 퍼지-뉴렬 네트워크의 학습률과 모멘텀 계수가 본논문에서 제안한 개선된 컴플렉스 법과 수정된 학습알고리즘을 이용하여 자동동조 된다. 이 알고리즘의 비선형 공정으로의 응용을 위하여 교통 경로 선택 데이타 및 하수처리시스템의 활성화와 공정 데이타가 제안한 모델링의 성능을 평가하기 위해 사용된다. 제안된 방법이 기존의 다른 논문과 비교하여 더 높은 정확도를 가진 지능형 모델을 생성함을 보인다.

  • PDF

적응형 뉴로-퍼지(ANFIS)를 이용한 건축공사비 예측 (Prediction of Building Construction Project Costs Using Adaptive Neuro-Fuzzy Inference System(ANFIS))

  • 윤석헌;박우열
    • 한국건축시공학회지
    • /
    • 제23권1호
    • /
    • pp.103-111
    • /
    • 2023
  • 건설 프로젝트의 초기단계에서 공사비를 정확하게 예측하는 것은 프로젝트를 성공적으로 수행하기 위해 매우 중요하다. 본 연구에서는 ANFIS 모델을 활용하여 건설프로젝트의 초기단계에 건축공사비를 예측할 수 있는 모델을 제시하였다. 모델의 활용도를 높이기 위해 공개된 공사비 데이터를 활용하였으며 프로젝트 초기단계의 제한된 정보를 바탕으로 예측할 수 있는 모델을 제시하고자 하였다. ANFIS와 관련된 기존 연구를 분석하여 최근의 동향을 파악하였으며 ANFIS의 기본 구조를 고찰한 후 건축공사비 예측을 위한 ANFIS 모델을 제시하였다. ANFIS의 모델의 소속함수의 종류와 개수에 따라 달라지는 예측 성능을 분석하여 가장 성능이 우수한 모델을 제시하였으며, 대표적인 기계학습 모델의 예측 정확도와 비교분석하였다. 적용결과 ANFIS 모델을 다른 기계학습 모델과 비교한 결과 동등 이상으로 성능을 나타내 프로젝트 초기단계 공사비 예측에 적용 가능할 것으로 판단된다.

퍼지 멤버쉽 함수와 신경망을 이용한 이상 침입 탐지 (Anomaly Intrusion Detection using Fuzzy Membership Function and Neural Networks)

  • 차병래
    • 정보처리학회논문지C
    • /
    • 제11C권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 컴퓨터 네트워크의 확대 및 인터넷 이용의 급격한 증가에 따른 최근의 정보통신 기반구조는 컴퓨터 시스템의 네트워크를 통한 연결로 다양한 서비스를 제공하고 있다. 특히 인터넷은 개방형 구조를 가지고 있어 서비스 품질의 보장과 네트워크의 관리가 어렵고, 기반구조의 취약성으로 인하여 타인으로부터의 해킹 및 정보유출 둥의 위협으로부터 노출되어 있다. 보안 위협에 대한 능동적인 대처 및 침입 이후에 동일한 또는 유사한 유형의 사건 발생에 대해 실시간 대응할 수 있는 방법이 중요하게 되었으며 이러한 해결책으로서 침임 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 지도학습 알고리즘이 의한 침입탐지 시스템의 성능을 향상시키기 위해서 불확실성을 해결하기 위한 방법인 퍼지를 적용한 뉴로-퍼지 모델의 이상 침입 탐지 시스템에 대해서 연구한다. 즉, 신경망 학습의 전달함수를 불확실성을 해결하기 위한 퍼지 멤버쉽 함수로 수정하여 지도학습을 수행하였다. 제안한 뉴로-퍼지기법을 DARPA 침입 데이터를 이용하여 오용 탐지의 한계성을 극복한 네트워크기반의 이상침입 탐지에 적용하여 성능을 검증하였다.

적응 뉴로-퍼지 제어기를 이용한 비선형 시스템의 안정화 제어 (Stabilization Control of Nonlinear System Using Adaptive Neuro-Fuzzy Controller)

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Gue
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.730-737
    • /
    • 2001
  • 본 논문에서는 적응 뉴로-퍼지 제어기를 이용하여 비선형 복합시스템 모델의 안정화 제어 방법에 적용한다. 제안된 적응 뉴로-퍼지 제어기는 언어적 퍼지추론, 프로세스의 입출력 데이터를 이용하는 신경회로망, 최적이론 등이 포함된 인공지능을 시스템구조와 파라메터 검증에 필요한 도구로 이용한다. 그 결과 제안된 방법이 이전에 연구되었던 다른 방법보다 아주 높은 인공지능 모델을 제시하였다.

  • PDF