• 제목/요약/키워드: 퍼셉트론 신경회로망

검색결과 50건 처리시간 0.029초

다층 퍼셉트론 신경회로망을 사용한 구간 검출 알고리즘 (Section Detection Algorithm using Multi-layer Perceptron Neural Network)

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.274-277
    • /
    • 2010
  • 본 논문에서는 다층 퍼셉트론 신경회로망을 사용하여 각 프레임에서 유성음, 무성음, 그리고 묵음 구간을 검출하는 구간검출 알고리즘을 제안한다. 신경회로망의 입력으로는 고속 푸리에변환에 의한 전력스펙트럼 및 고속 푸리에변환 계수가 사용되어 네트워크가 학습된다. 본 실험에서는 원 음성에 백색잡음이 중첩된 음성을 신경회로망에 입력함으로서 각 프레임에서의 유성음, 무성음, 묵음 구간의 검출성능 결과를 나타낸다.

  • PDF

퍼셉트론형 신경회로망에 의한 패리티판별 (Parity Discrimination by Perceptron Neural Network)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.565-571
    • /
    • 2010
  • 본 논문에서는 퍼셉트론형 신경회로망에 오차역전파 알고리즘을 사용하여 학습을 실시하여, N비트의 패리티판별에 필요한 최소의 중간유닛수의 해석에 관한 연구이다. 따라서 본 논문은 제안한 퍼셉트론형 신경회로망의 중간 유닛의 수를 변화시켜 N비트의 패리티 판별 실험을 실시하였다. 본 시스템은 패라티 판별의 실험을 통하여 N비트 패리티 판별이 가능하다는 것을 실험으로 확인한다.

신경회로망을 사용한 N 비트 패리티 판별 (N bit Parity Discrimination using Perceptron Neural Network)

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.149-152
    • /
    • 2009
  • 본 논문에서는 오차역전파 알고리즘을 사용한 3층 구조의 퍼셉트론형 신경회로망으로 네트워크의 학습을 실시하여, N비트의 패리티판별에 필요한 최소의 중간유닛수의 해석에 관한 연구이다. 따라서 본 논문은 제안한 퍼셉트론형 신경회로망의 중간 유닛의 수를 변화시켜 N 비트의 패리티 판별 실험을 실시하였다. 본 시스템은 패리티 판별의 실험을 통하여 N 비트 패리티 판별이 가능하다는 것을 실험으로 확인한다.

  • PDF

퍼셉트론 신경회로망을 사용한 유성음, 무성음, 묵음 구간의 검출 알고리즘 (Voiced-Unvoiced-Silence Detection Algorithm using Perceptron Neural Network)

  • 최재승
    • 한국전자통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.237-242
    • /
    • 2011
  • 본 논문에서는 다층 퍼셉트론 신경회로망을 사용하여 각 프레임에서의 유성음, 무성음, 그리고 묵음 구간을 검출하는 구간검출 알고리즘을 제안한다. 다층 퍼셉트론 신경회로망의 입력으로는 고속 푸리에변환에 의한 전력스펙트럼 및 고속 푸리에변환 계수가 사용되어 네트워크가 학습된다. 본 실험에서는 원 음성에 백색잡음이 중첩된 음성을 신경회로망에 입력함으로서 각 프레임에서의 유성음, 무성음, 묵음 구간의 검출성능 결과를 나타낸다. 본 실험에서는 신경회로망의 학습 데이터 및 평가 데이터가 다를 경우에도 이러한 음성 및 백색잡음에 대하여 92% 이상의 검출율을 구할 수 있었다.

가우스 전위함수를 가지는 신경회로망 모델

  • 오상훈;김명원
    • 전자통신동향분석
    • /
    • 제5권2호
    • /
    • pp.39-50
    • /
    • 1990
  • 다층 퍼셉트론 신경회로망 모델이 여러가지 복잡한 문제를 역전파 학습에 의하여 해결할 수 있다고 보고된 후로, 이 모델을 이용한 응용분야의 연구가 활발하다. 그렇지만, 이 다층 퍼셉트론 모델은 오랜 학습시간이 필요하며, 또 분류경계가 입력층과 숨겨진 층간의 연결가중치에 의해 결정되는 초기하 평면의 조합으로 이루어지기 때문에, 숨겨진 층의 뉴런 수가 부족하면 분류경계를 제대로 나타낼 수 없게 된다. 이러한 단점들을 극복하기 위하여 숨겨진 층의 활성화 함수는 시그모이드 형태가 아닌 가우스 함수가 되도록 하고 이 가우스 함수들의 선형적 합에 의하여 출력층 뉴런들의 값이 결정되는, 즉, 가우스 함수가 출력층의 전위함수(potential function)가 되는 신경회로망이 여러번 제안되었다. 본 논문에서는 가우스 함수를 전위함수로 가지는 신경회로망 모델들에 대하여 이 모델들의 실제 응용 예와 함께 알아보겠다.

대칭 신경회로망과 그 응용에 관한 연구 (A Study on the Symmetric Neural Networks and Their Applications)

  • 나희승;박영진
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1322-1331
    • /
    • 1992
  • 본 연구에서는 Fig.3과 같은 다층 퍼셉트론을 사용하기로 한다. 그리고 위 에서 언급한 세가지점에서 다층퍼셉트론을 다시 살펴보아 해결하고자 하는 문제에 맞 도록 다층퍼셉트론을 개선시켜 보기로 한다. 따라서 본 연구의 목적은 제한조건을 갖는 문제를 풀기위한 새로운 형태의 다층퍼셉트론 설계 및 이에 적합한 학습규칙을 적용하여 보다 간단한 구조와 빠른 학습시간을 갖는 신경망을 구성하는데 있다.

LPC 켑스트럼 계수와 신경회로망을 사용한 화자인식 (Speaker Recognition using LPC cepstrum Coefficients and Neural Network)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2521-2526
    • /
    • 2011
  • 본 논문에서는 퍼셉트론 신경회로망과 선형예측부호화 켑스트럼 계수를 사용한 화자인식 알고리즘을 제안한다. 제안하는 화자인식 알고리즘은 입력받은 음성신호에 대해서 유성음 구간을 추출한다. 추출된 유성음 구간에 대하여 선형예측 분석에 의하여 화자의 특성을 가지고 있는 선형예측부호화 켑스트럼 계수를 구한다. 구해진 선형예측부호화 켑스트럼 계수를 분류하기 위하여 이 켑스트럼 계수를 퍼셉트론 신경회로망의 입력으로 사용하여 네트워크의 학습을 수행한다. 본 실험에서는 선형예측부호화 켑스트럼 계수와 신경회로망을 사용하여 본 화자인식 알고리즘이 유효하다는 것을 인식률을 통하여 확인한다.

단층 퍼셉트론을 이용한 QPSK 신호의 검파 (A Detection for Signal using Single Layer Perceptron)

  • 조순계;최형기;김종교
    • 한국음향학회지
    • /
    • 제17권3호
    • /
    • pp.72-77
    • /
    • 1998
  • 이동통신에서는 송수신이 이루어지는 전파환경에 따라 직접파와 다중경로에 기인한 간접파에 의한 페이딩, 잡음, 간섭 등의 영향을 받게 된다. 이 논문에서는 복잡하고 다양한 유형의 수신신호 중 원하는 신호정보를 정확히 추출하기 위해 인공신경회로망 (ANN:Artivicial Neural Network)을 이용한다. 인공 신경회로망의 하나인 단층 퍼셉트론을 이용한 검파기를 제안하고, QPSK 변조방식을 이용하여 시뮬레이션을 행하고, 결과 분석을 통해 제안 시스템의 활용 가능성을 확인하다.

  • PDF

선형예측계수를 사용한 화자인식 (Speaker Recognition using Linear Prediction Coefficient)

  • 최재승;정병구
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.509-511
    • /
    • 2011
  • 본 논문에서는 다층 퍼셉트론 신경회로망과 선형예측계수를 사용한 화자인식 알고리즘을 제안한다. 제안하는 화자인식 알고리즘은 입력받은 음성신호에 대해서 유성음 구간을 추출한다. 추출된 유성음구간에 대하여 선형예측 분석에 의하여 화자의 특성을 가지고 있는 선형예측계수를 구한다. 구해진 선형예측계수를 분류하기 위하여 선형예측계수를 퍼셉트론 신경회로망의 입력으로 사용하여 네트워크의 학습을 수행한다. 본 실험에서는 선형예측계수와 신경회로망을 사용하여 본 화자인식 알고리즘이 유효하다는 것을 인식률을 통하여 확인한다.

  • PDF

예측신경회로망 모델 음성인식기의 변별력있는 학습 알고리즘 (A Discriminative Training Algorithm for Speech Recognizer Based on Predictive Neural Network Models)

  • 나경민
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.242-246
    • /
    • 1993
  • 예측신경회로망 모델은 다층 퍼셉트론을 연속되는 음성특징 벡터간의 비선형예측기로 사용하는 동적인 음성인식 모델이다. 이 모델은 음성의 동적인 특성을 인식에 이용하고 연속음성인식으로의 확장이 용이한 우수한 인식 모델이다. 그러나, 예측신경회로망 모델은 음운학적으로 유사한 음성구간에서의 변별력이 낮다는 문제점이 있다. 그것은 기존의 학습 알고리즘이 다른 어휘와의 거리는 고려하지 않고 대상어휘의 예측오차만 최소화시키기 때문이다. 따라서, 본 논문에서는 직접 인식오차를 최소화시키는 GPD알고리즘에 의해 유사어휘간의 거리를 고려하는 변별력있는 학습 알고리즘을 제안한다.

  • PDF