• 제목/요약/키워드: 퍼셉트론

Search Result 386, Processing Time 0.031 seconds

Emergency Situation Recognition System Using CCTV and Deep Learning (CCTV와 딥러닝을 이용한 응급 상황 인식 시스템)

  • Park, SeJun;Jeong, Beom-jin;Lee, Jeong-joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.807-809
    • /
    • 2020
  • 기존의 CCTV 관리 체계는 사건·사고에 대한 신속한 조치가 불가능하고 정황 파악이나 증거자료 확보 등 사후조치의 성격이 강하다. 본 논문에서는 Mask R-CNN(Regions with CNN)을 이용하여 CCTV가 읽어 들이는 객체가 응급상황인지 판단하는 방법을 제시한다. 사람으로 인식되는 영역을 다층 퍼셉트론(MLP, Multi-Layer Perceptron)으로 학습시켜 해당 대상이 처한 상황을 인지하고 응급상황으로 인식되는 상황이 지속될 경우 관리 모니터를 통해 사용자에게 알림을 준다. 본 연구를 통해 실시간 상호작용적인 CCTV 관리 체계를 구축하여 도움이 필요한 사람의 골든타임을 놓치지 않게 될 것으로 기대한다.

The Design and Implement on Tumor Classification Model Based on Microarray (마이크로어레이 기반 종양 분류 모델 설계와 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.713-716
    • /
    • 2007
  • 오늘날 인간 프로젝트와 같은 종합적인 연구의 궁극적 목적을 달성하기 위해서는 이들 연구로부터 획득한 대량의 관련 데이터에 대해 새로운 현실적 의미를 부여할 수 있어야 한다. 따라서 현재의 마이크로어레이 기술을 이용해서 효과적으로 종양을 분류하기 위해서는 특정 종양 분류와 밀접하게 관련이 있는 정보력 있는 유전자를 선택하는 과정이 필수적이다. 본 논문에서는 암에 걸린 흰쥐 외피 기간 세포 분화 실험에서 얻어진 3840 유전자의 마이크로어레이 cDNA를 이용해 데이터의 정규화를 거쳐 유사성 척도 방법으로 정보력 있는 유전자들을 추출한 후, DT, NB, SVM, MLP 알고리즘을 이용하여 클래스 분류 모델을 구축하고, 성능을 비교분석하였다. 피어슨 적률 상관 계수를 이용하여 선택된 50 유전자들을 멀티퍼셉트론 분류기로 분류한 결과 94.8%의 정확도를 보여 가장 최적의 조합을 보였다.

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model (인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.757-772
    • /
    • 2019
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.

SVM Classifier for the Detection of Ventricular Fibrillation (SVM 분류기를 통한 심실세동 검출)

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.27-34
    • /
    • 2005
  • Ventricular fibrillation(VF) is generally caused by chaotic behavior of electrical propagation in heart and may result in sudden cardiac death. In this study, we proposed a ventricular fibrillation detection algorithm based on support vector machine classifier, which could offer benefits to reduce the teaming costs as well as good classification performance. Before the extraction of input features, raw ECG signal was applied to preprocessing procedures, as like wavelet transform based bandpass filtering, R peak detection and segment assignment for feature extraction. We selected input features which of some are related to the rhythm information and of others are related to wavelet coefficients that could describe the morphology of ventricular fibrillation well. Parameters for SVM classifier, C and ${\alpha}$, were chosen as 10 and 1 respectively by trial and error experiments. Each average performance for normal sinus rhythm ventricular tachycardia and VF, was 98.39%, 96.92% and 99.88%. And, when the VF detection performance of SVM classifier was compared to that of multi-layer perceptron and fuzzy inference methods, it showed similar or higher values. Consequently, we could find that the proposed input features and SVM classifier would one of the most useful algorithm for VF detection.

Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars (사람 걸음 탐지 및 배경잡음 분류 처리를 위한 도플러 레이다용 딥뉴럴네트워크)

  • Kwon, Jihoon;Ha, Seoung-Jae;Kwak, Nojun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.550-559
    • /
    • 2018
  • The effectiveness of deep neural networks (DNNs) for detection and classification of micro-Doppler signals generated by human walking and background noise sources is investigated. Previous research included a complex process for extracting meaningful features that directly affect classifier performance, and this feature extraction is based on experiences and statistical analysis. However, because a DNN gradually reconstructs and generates features through a process of passing layers in a network, the preprocess for feature extraction is not required. Therefore, binary classifiers and multiclass classifiers were designed and analyzed in which multilayer perceptrons (MLPs) and DNNs were applied, and the effectiveness of DNNs for recognizing micro-Doppler signals was demonstrated. Experimental results showed that, in the case of MLPs, the classification accuracies of the binary classifier and the multiclass classifier were 90.3% and 86.1%, respectively, for the test dataset. In the case of DNNs, the classification accuracies of the binary classifier and the multiclass classifier were 97.3% and 96.1%, respectively, for the test dataset.

Analysis of Feature Importance of Ship's Berthing Velocity Using Classification Algorithms of Machine Learning (머신러닝 분류 알고리즘을 활용한 선박 접안속도 영향요소의 중요도 분석)

  • Lee, Hyeong-Tak;Lee, Sang-Won;Cho, Jang-Won;Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.139-148
    • /
    • 2020
  • The most important factor affecting the berthing energy generated when a ship berths is the berthing velocity. Thus, an accident may occur if the berthing velocity is extremely high. Several ship features influence the determination of the berthing velocity. However, previous studies have mostly focused on the size of the vessel. Therefore, the aim of this study is to analyze various features that influence berthing velocity and determine their respective importance. The data used in the analysis was based on the berthing velocity of a ship on a jetty in Korea. Using the collected data, machine learning classification algorithms were compared and analyzed, such as decision tree, random forest, logistic regression, and perceptron. As an algorithm evaluation method, indexes according to the confusion matrix were used. Consequently, perceptron demonstrated the best performance, and the feature importance was in the following order: DWT, jetty number, and state. Hence, when berthing a ship, the berthing velocity should be determined in consideration of various features, such as the size of the ship, position of the jetty, and loading condition of the cargo.

Improvements of an English Pronunciation Dictionary Generator Using DP-based Lexicon Pre-processing and Context-dependent Grapheme-to-phoneme MLP (DP 알고리즘에 의한 발음사전 전처리와 문맥종속 자소별 MLP를 이용한 영어 발음사전 생성기의 개선)

  • 김회린;문광식;이영직;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.21-27
    • /
    • 1999
  • In this paper, we propose an improved MLP-based English pronunciation dictionary generator to apply to the variable vocabulary word recognizer. The variable vocabulary word recognizer can process any words specified in Korean word lexicon dynamically determined according to the current recognition task. To extend the ability of the system to task for English words, it is necessary to build a pronunciation dictionary generator to be able to process words not included in a predefined lexicon, such as proper nouns. In order to build the English pronunciation dictionary generator, we use context-dependent grapheme-to-phoneme multi-layer perceptron(MLP) architecture for each grapheme. To train each MLP, it is necessary to obtain grapheme-to-phoneme training data from general pronunciation dictionary. To automate the process, we use dynamic programming(DP) algorithm with some distance metrics. For training and testing the grapheme-to-phoneme MLPs, we use general English pronunciation dictionary with about 110 thousand words. With 26 MLPs each having 30 to 50 hidden nodes and the exception grapheme lexicon, we obtained the word accuracy of 72.8% for the 110 thousand words superior to rule-based method showing the word accuracy of 24.0%.

  • PDF

Prediction of Urban Land Cover Change Using Multilayer Perceptron and Markov Chain Analysis (다층 퍼셉트론(MLP)과 마코프 체인 분석(MCA)을 이용한 도심지 피복 변화 예측)

  • Bhang, Kon Joon;Sarker, Tanni;Lee, Jin-Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.85-94
    • /
    • 2018
  • The change of land covers in 2026 was prediceted based on the change of urbanization in 1996, 2006 and 2016 in Seoul and surrounding areas in this study. Landsat images were used as the basic data, and MLP (Multilayer Perceptron) and MCA (Markov Chain Analysis) were integrated for future prediction for the study area. The land cover transition potentials were calculated by setting up sub-models in MLP and the driving factors of land cover transition from 1996 to 2006 and transition probabilities were calculated using MCA to generate the land cover map of 2016. This was compared to the land cover map of 2016 from Landsat. MLP and MCA were verified and the future land covers of 2026 were predicted using the land cover map from Landsat in 2006 and 2016. As a result, it was predicted that the major land cover changes from 1996 to 2006 were from Barren Land and Grass Land to Builtup Area, and the same trend of transition will be remained for 2026. This study is meaningful in that it is applied for the first time to predict the future coating change in Seoul and surrounding areas by the MLP-MCA method.

The Effectiveness of Electroglottographic Parameters in Differential Diagnosis of Laryngeal Cancer (후두암 감별진단에 있어 성문전도(Electroglottograph) 파라미터의 유용성)

  • 송인무;고의경;전경명;권순복;김기련;전계록;김광년;정동근;조철우
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Background and Objectives : Electroglottography(EGG) is a non-invasive method of monitoring the vocal cord vibration by measuring the variation of physiological impedance across the vocal folds through the neck skin. It reveals especially the vocal fold contact area and is widely used for basic laryngeal researches, voice analysis and synthesis. The purpose of this study is to investigate the effectiveness of EGG parameters in differential diagnosis of laryngeal cancer. Materials and Methods : The author investigated 10 laryngeal cancer and 25 benign laryngeal disease patients who visited at the Department of Otolaryngology, Pusan National University Hospital. The EGG equipment was devised in the author's Department. Among various parameters of EGG, closed quotient(CQ), speed quotient(SQ), speed index(SI), Jitter, Shimmer, Fo were determined by an analysis program made with MATLAB 6.5$^{\circledR}$(Mathwork, Inc.). In order to differentiate various laryngeal diseases from pathologic voice signals, the author has used the electroglottographic parameters using the neural network of multilayer perceptron structure. Results : SQ, SI, Jitter and Shimmer values except those of CQ and Fo showed remarkable differences between benign and malignant laryngeal disease groups. From the artificial neural network, the percentage of differentiating the laryngeal cancer was over 80% in SQ, SI, Jitter, Shimmer except for CQ and Fo. These results indicated that it is possible to discriminate the benign and malignant laryngeal diseases by EGG parameters using the artificial neural network. Conclusion : If parameters of EGG which can reveal for the pathology of laryngeal diseases are additionally developed and the current classification algorithm is improved, the discrimination of laryngeal cancer will become much more accurate.

  • PDF