• Title/Summary/Keyword: 팽창기 효율

Search Result 78, Processing Time 0.019 seconds

Analysis of Efficiencies of Scroll Expander for Micro Scale Organic Rankine cycle (초소형 유기랭킨사이클용 스크롤팽창기 효율 특성 분석)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.398-401
    • /
    • 2012
  • In this Study, efficiencies of the scroll expander under development for organic Rankine cycle using engine waste heat of vehicle have been analyzed and compared with the commercial scroll expander. While operating organic Rankine cycle for analysing expander efficiencies, power of expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured. Overall efficiency of the expander has been shown the very low level compared with the overall efficiency of the commercial expander. Especially, because the low volumetric efficiency has much effect on overall efficiency, the working fluid leakage trouble of expander has to be solved surely for improvement of the expander overall efficiency.

Experimental Study of Vane Expander Prototype Applied to Micro Organic Rankine Cycle (초소형 유기랭킨사이클 적용 프로토 타입 베인 팽창기에 관한 실험적 연구)

  • Shin, Dong Gil;Kim, Young Min
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2014
  • In this study, performances of the vane expander protype for micro organic Rankine cycle with refrigerant R134a as a working fluid have been analyzed. While operating organic Rankine cycle for analysing expander efficiencies such as overall efficiencies, volumetric efficiencies and mechanical efficiencies under $110^{\circ}C$ of expander inlet temperature, the power of the expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured while varying the rotational speed of the expander. It was found that the more the expander revolution speed is high, the more the expander power, overall efficiencies and volumetric efficiencies are higher. In case of 500 rpm of rotational speed, overall efficiencies are 6~7% and in case of 1000 rpm, overall efficiencies are 11~12%. We have found that low volumetric efficiencies result in poor overall efficiencies.

Optimization of Design Pressure Ratio of Positive Displacement Expander for Engine Waste Heat Recovery of Vehicle (자동차 엔진 폐열 회수 동력시스템에서 용적형 팽창기의 설계 팽창비 최적화)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • The effect of built-in volume ratio of expander on the performance of a two-loop Rankine cycle system for engine waste heat recovery of vehicle has been investigated. In the case of positive displacement expander in the various operating condition of the vehicle, it can operate in both under-expansion and over-expansion conditions. Therefore, the analysis of off-design performance for the expander is very important. Furthermore, the volume and weight of the expander as well as the efficiency must be considered in the optimization of the expander. This study shows that the built-in volume ratio of expander causing under-expansion at a target condition is more desirable considering the off-design performance and size of the expander, based on the simple modeling of off-design operation of the expander.

Analysis of Performance of Organic Rankine Cycle for Inlet Condition of Displacement Type Expander (용적형 팽창기 입구 조건 변화에 따른 유기랭킨사이클 성능 분석)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • An expander of an organic Rankine cycle is an essential component that significantly influences its entire performance and cycle efficiency. The inlet pressure and temperature of the expander used for the organic Rankine cycle are limited by the expander's mechanical properties and the characteristics of the working fluid. The organic Rankine cycle's output, heat absorption, and efficiency are altered by the inlet pressure and temperature of the expander. In this study, a theoretical comparative analysis was conducted on an organic Rankine cycle's performance changes, which are dependent on the inlet condition of the expander. The working fluid is an R134a refrigerant, and the expander is a positive-displacement type.

Exergy analysis on the power recovery of LNG supply system (냉열 에너지의 동력 회수에 대한 엑서지 해석 방법에 관한 연구)

  • Park, Il-Hwan;Kim, Choon-Seong
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • The expansion work that is wasted through the irreversible expansion through the PC valve of decompression process of the natural gas governor station can be recovered by replacing the process by an isentropic expansion. The energy and exergy analyses for the two decompression process models of power producing and current decompression process model are presented. Analysis results showed that the exergy by gas supply is 56.29%, the exergy by producing power is 32.12 % in case of preheating system and 22.52% in case of non-preheating system. The dead exergy at the PCV is generated much more network. As these results, the usefulness of exergy analysis is verified.

  • PDF

A Study on the Operational Optimization of Turbo-Expander Pressure Reduction System to the Natural Gas Flow Rates (천연가스 유량변화에 따른 터보팽창기 감압시스템 운전 최적화에 관한 연구)

  • Yoo, Han Bit;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2015
  • Electricity can be generated when the natural gas passes through a turbo-expander pressure reduction system at natural gas pressure reduction stations. Efficiency of the turbo-expander depends on the ratio of the natural gas flow rates to the design flow rate of the turbo-expander. Therefore, the optimal conditions for the operation of the pressure reduction system can be determined by controlling the natural gas flow rates. In this study, we have calculated the electric energy generation depending on the natural gas flow rates at the two low-pressure reduction stations when the pressure of the natural gas is reduced from 17.5 bar to 8.5 bar and have found the optimal conditions for the turbo-expander pressure reduction system through the comparison with the calculation results. The turbo-expander generates the electric power efficiently for the high natural gas flow rates which variations are slight. The determined design flow rate of the turbo-expander has the highest coverage of the natural gas flow rates. The electricity generation is calculated as much as 9 MW(B station) and 12 MW(D station) at each pressure reduction station.

Design of Thermodynamic Cycle and Cryogenic Turbo Expander for 2 kW Class Brayton Refrigerator (2 kW급 브레이튼 냉동기용 열역학 사이클 및 극저온 터보 팽창기 설계)

  • Lee, Jinwoo;Lee, Changhyeong;Yang, Hyeongseok;Kim, Seokho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.299-305
    • /
    • 2016
  • The High Temperature Superconducting power cables (HTS power cables) become increasingly longer to commercialize the HTS power cable system. Accordingly, demands on refrigerators of large cooling capacity per a unit system have been increased. In Korea, it is currently imported from abroad with the high price due to insufficient domestic technologies. In order to commercialize the HTS power cables, it is necessary to develop the refrigerators with large cooling capacity. The Brayton refrigerators are composed of recuperative heat exchangers, compressors and cryogenic turbo expanders. The most directly considering the efficiency of the Brayton refrigerator, it depends on performance of the cryogenic turbo expander. Rotating at high speed in cryogenic temperature, the cryogenic turbo expanders lower temperature by expanding high pressure of a helium or neon gas. In this paper, the reverse Brayton cycle is designed and the cryogenic turbo expander is designed in accordance with the thermodynamic cycle.

Experimental Study on the Performance Characteristics of a Scroll Expander for 1kW-class Organic Rankine Cycle (1kW급 유기랭킨사이클용 스크롤 팽창기의 성능 특성에 관한 실험적 연구)

  • Kim, Dokyun;Yun, Eunkoo;Yoon, Sang Youl;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • The performance characteristics of a scroll expander is the most important variable for the performance of organic Rankine cycle system. In this paper, the performance characteristics of a scroll expander was identified using 1kW class organic Rankine cycle system with various operating conditions. The ORC system is composed of an evaporator, a scroll expander, a condenser and a working fluid feed pump that uses R245fa as working fluid. The hot water temperature was controlled from $80^{\circ}C$ to $115^{\circ}C$ by the 50kW-class electric water-heater. The maximum isentropic efficiency of the scroll expander was measured about 77%, and the shaft power was measured from 0.5 kW to 1.8 kW according to heat source temperatures.

Conceptual design of an expander for waste heat recovery of an automobile exhaust gas (자동차 배기가스 폐열 회수용 팽창기 개념설계)

  • Kim, Hyun-Jae;Kim, You-Chan;Kim, Hyun-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.237-242
    • /
    • 2009
  • A steam Rankine cycle was considered to recover waste heat from the exhaust gas of an automobile. Conceptual design of a swash plate type expander was practiced to convert steam heat to shaft power. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 1.93 kW from the exhaust gas waste heat of 20 kW. The expander output increased linearly accordingly to the amount of exhaust gas waste heat in the range of from 10-40 kW, and the Rankine cycle efficiency was more or less constant at about 9.6% regardless of the waste heat amount.

  • PDF

Effect of Nitrogen Injection Pressure on Lqiufied Engine Performance (질소 분사 압력이 액화질소 엔진의 성능 특성에 미치는 영향)

  • Shin, Donggil
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • A liquid nitrogen engine is a highly clean power engine, which does not emit any hazardous substances in its fumes. Additionally, it has an advantage over electric vehicles, as its energy density is larger than that of a battery. The use of an existing liquid nitrogen engine is typically limited to the reciprocation type. In this study, the concept of a nitrogen engine equipped with a scroll expander is introduced. The engine's efficiency was shown to increase when the scroll expander was utilized in the engine, while also adding to the simplification of the structure. Therefore, compared to the existing reciprocation-type engine, the engine with the scroll expander has the potential to be both technically and economically more competitive. In this study, the performance of a liquid nitrogen engine equipped with a scroll expander was analyzed while altering the injection pressure profile of liquid nitrogen.