• Title/Summary/Keyword: 팽창구조체

Search Result 121, Processing Time 0.033 seconds

Thermo-Mechanical Analysis of Continuous-Adjustment Thruster using Explosion Pressure (폭압을 사용하는 연속조정 추진구조체의 열-구조해석)

  • Kim, Kyung-Sik;Kwon, Young-Doo;Kwon, Soon-Bum;Gil, Hyuck-Moon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.699-705
    • /
    • 2011
  • High-maneuver missile is a projectile which demands a strong momentum at short time. To produce a necessary thrust for the flight, the gas of high temperature and pressure is generated through explosive combustion of solid propellant, and a great thrust can be obtained by expanding this high temperature and pressure gas. Although the operating time of a rocket motor is less than a few seconds, a failure of part or ablation near the throat of nozzle may take place during the expansion of high temperature and pressure gas for great thrust. In other words, for the precise control of a missile an exact stress analysis considering both, the thermal stress caused by the heat transfer between combustion gas and wall, and the mechanical stress caused by the pressure change in the flow, should be considered first. In this connection, this study investigated the safety, as a point of view of stress and melting point of the material, of the pre-designed thrust generating structure which is subjected to high temperature and pressure as a function of motor operating time.

Coupled Nonlinear Finite Element-Boundary Element Analysis of Nuclear Waste Storage Structures Considering Infinite Boundaries (비선형 유한요소-경계요소 조합에 의한 핵폐기구조체의 무한영역해석)

  • 김문겸;허택녕
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.89-98
    • /
    • 1993
  • As the construction of nuclear power plants are increased, nuclear wastes disposal has been faced as a serious problem. If nuclear wastes are to be buried in the underground stratum, thermo-mechanical behavior of stratum must be analyzed, because high temperature distribution has a significant effect on tunnel and surrounding stratum. In this study, in order to analyze the structural behavior of the underground which is subject to concentrated heat sources, a coupling method of nonlinear finite elements and linear boundary elements is proposed. The nonlinear finite elements (NFE) are applied in the vicinity of nuclear depository where thermo-mechanical stress is concentrated. The boundary elements are also used in infinite domain where linear behavior is expected. Using the similar method as for the problem in mechanical field, the coupled nonlinear finite element-boundary element (NFEBE) is developed. It is found that NFEBE method is more efficient than NFE which considers nonlinearity in the whole domain for the nuclear wastes depository that is expected to exhibit local nonlinearity behavior. The effect of coefficients of the rock mass such as Poisson's ratio, elastic modulus, thermal diffusivity and thermal expansion coefficient is investigated through the developed method. As a result, it is revealed that the displacements around tunnel are largely dependent on the thermal expansion coefficients.

  • PDF

Influence of Microstructures on Thermal Expansion Behavior of $Al_2TiO_{5}$ Ceramics ($Al_2TiO_{5}$ Ceramics의 열팽창거동에 대한 미세구조의 영향)

  • 김익진;이기성
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.40-46
    • /
    • 2001
  • The thermal stability of $Al_2TiO_{5}$ ceramics was improved by formation of solid solution with MgO, such as $MgAl_2O_4$ spinel through electrofusion in an arc furnance, and by limitation of grain size and microcracks with $SiO_2$, $ZrO_2$ and ${\alpha}$-$Al_2O_3$. The low thermal expansion properties of $Al_2TiO_{5}$ composites show the thermal hysteresis curves due to the strong anisotropy of $Al_2TiO_{5}$. These phenomena are explained by the opening and closing of microcracks. The relation between thermal hysteresis, microstructures and sintering temperature were studied by dilatometry.

마이크로웨이브를 이용한 화학적 박리를 통한 그라핀 제조 및 특성

  • Hwang, Gi-Wan;Kim, Hyo-Jung;Park, Nam-Gyu;Kim, Ui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.80.2-80.2
    • /
    • 2012
  • 그라핀(graphene)은 탄소 원자의 2차원 육각형 $sp^2$ 결합체로서 탄소 나노구조체가 가지는 여러 가지 우수한 특성을 보유하면서 대면적 기판 위에서 소자구현 및 투명전극 등으로의 우수한 응용성 때문에 고품질 그라핀 제조와 물리적 특성, 소자응용에 관한 연구가 활발히 진행되고 있다. 최근 그라핀 제조를 위한 여러 가지 방법이 개발되고 있으나 화학적 박리법이 저비용으로 대량생산을 위해 가장 유리한 방법으로 주목을 받고 있다. 화학적 박리법은 벌크 그라파이트를 강한 산을 이용하여 산화시켜 형성된 산화 그라파이트(graphite oxide)을 열적으로 팽창시켜 박리하고 환원하여 그라핀으로 제조하는 것이다. 보통 열적팽창을 위해서 열처리 로를 사용하게 되는데, 본 연구에서는 박리를 보다 효율적으로 진행시키고 고품질의 그라핀을 얻기 위해 마이크로웨이브를 이용한 박리법을 적용하였다. 마이크로웨이브는 설비가 간단하고 매우 균일하게 열팽창을 시킬 수 있을 뿐만 아니라 대량생산에서도 유리할 것으로 기대하였다. 천연 그라파이트(99.9%, 평균입도 $200{\mu}m$)를 Hummer 방법에 따라 $H_2SO_4$$KMnO_4$를 사용하여 산화시키고 필터링 후 마이크로웨이브를 조사하였다. 이후 환원 처리를 거쳐 그라핀을 제조하였다. 라만스펙트럼 및 투과전자현미경으로 분석한 결과 우수한 품질의 그라핀이 형성되었음을 알 수 있었다. 그라핀의 두께 및 품질은 마이크로웨이브의 인가시간 및 반복 횟수가 증가함에 따라 크게 영향받는 것을 확인하였다. 본 발표에서는 마이크로웨이브를 사용한 산화 그라파이트 박리 및 그라핀 제조라는 새로운 시도와 주요변수에 따른 그라핀 특성에 관한 결과를 논의할 것이다.

  • PDF

Freezing and Deflection Characteristics of Flexible Pavement Structure Using Frost Model Test (동상모형실험을 통한 아스팔트 포장체의 동결 및 처짐 특성)

  • Shin, Eun-Chul;Hwang, Soon-Gab;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.27-35
    • /
    • 2012
  • In this paper, the frost heaving and thawing characteristics of flexible pavement structure were evaluated in the large scale freezer which have a specification of temperature range $-20^{\circ}C{\sim}10^{\circ}C$ and $3.2m(L){\times}3.2m(B){\times}2.4m(H)$ in size. The insulated steel box with the size of $0.9m(L){\times}0.9m(B){\times}0.9m(H)$ was used to simulate actual pavement road structure. The variation of temperature, frost heave amount and frost heave pressure were measured through the instrument of TDS-602 data logger. LFWD (light falling weight deflectometer) was used to determine the change of deflection due to the frost heaving and thawing. Furthermore, the influence of aggregate layer to the freezing of the subgrade soil was studied to verify the function and effectiveness of the anti-freezing layer.

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area (초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석)

  • Shin, Ho-Cheol;Park, Soo-Hyung;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.367-375
    • /
    • 2017
  • RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

Analysis of Crack Control Effect of Ultra-low Shrinkage Concrete through Wall Mock-up Test (벽체 실물대부재실험을 통한 초 저수축 콘크리트의 균열제어 효과 분석)

  • Seo, Tae-Seok;Lee, Hyun-Seung;Kim, Kang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • Ultra-low shrinkage concrete is very effective for securing the quality and appearance of a concrete structure because it can control the drying shrinkage cracks of the concrete structure to within a certain limit. In this study, with the purpose of commercializing ultra-low shrinkage concrete, the optimal amount of expansive agent and shrinkage reducing agent was determined through a lab test, and a concrete wall mock-up test was conducted to examine the shrinkage properties and crack control effects of ultra-low shrinkage concrete. As a result, it was confirmed that there was little drying shrinkage deformation in the wall specimen, and furthermore that no cracks were generated.

Physical and Mechanical Properties of Magnesium Oxide Matrix depending on Addition Ratio of Magnesium Chloride (염화마그네슘 첨가율에 따른 산화마그네슘 경화체의 물리 및 역학적 특성)

  • Kim, Heon-Tae;Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Recently, for longevity of resident building, the main trend is that the change of the inside space organization of resident building from wall construction to rhamen construction, which resulted in increase in use of lightweight composite panel. Thus, in this study, authors analyzed the engineering property of oxide of magnesium depending on the magnesium chloride addition ratio. The results of this research is expected to contribute on providing a fundamental material for the surface materials of lightweight composite panel. As the result of the experiment, as fluidity increased, air content decreased and initial set and final set as the magnesium chloride addition ratio increase. In the aspect of flexural strength and compressive strength, the test specimen showed the highest strength at 40% of the magnesium chloride addition ratio. At 20% of the magnesium chloride addition ratio, the test specimen showed the lowest water absorption rate. As the magnesium chloride addition ratio increases, the expansibility tends to increase as well in the aspect of shrinkage strain. After observing microstructure, we can see hydration products in the form of needle. It appeared high flexural strength because the hydration products have mineral fibrous tissue shape, which also contribute to the cause of the expansibility.

A Study on the Characteristics of the Adiabatically Expanded Polyolefin Structured Foams (단열 발포 폴리올레핀계 구조체의 특성에 관한 연구)

  • Hwang Jun-Ho;Kim Woo-nyon;Jun Jae-Ho;Kwak Soon-Jong;Hwang Seung-Sang;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2005
  • This study investigates the isothermal crystallization behaviors of polypropylene-polyethylene-(1-butene) terpolymer and the adiabatically expanded polyolefin structured foams. For this purpose, butane gas was used as a physical blowing agent. Avrami equation has been used to interpret theoretically the experimental results obtained by either DSC or polarized optical microscope. It is believed that elongation induced crystallization occurring during the adiabatic expansion process has resulted in an increase in crystallization rate, eventually leading to a faster growth rate of spherulites and an increase in the nucleation density. An analysis of the foam by SEM images showed that the structure of foam is uniform (below diameter 30 $\mu$m closed cell) In addition, the thermal conductivity and the compressive strength of the polyolefin structured foams was measured. The thermal conductivity of foamed resin with excellent insulation characteristics is reduced compared with unfoamed resin. The compressive strength is decreased with increase in the expansion ratio.

Evaluation on the Performance of Silica Fume Blended Cement Matrix Exposed to External Sulfate Attack (황산염침식을 받은 실리카 퓸 혼합 시멘트 경화체의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.121-128
    • /
    • 2007
  • The present study evaluates the resistance to sulfate attack of cement matrix with or without silica fume. The main variable was the replacement levels of silica fume. In order to introduce sulfate attack to cement matrix, mortars and pastes was exposed to sodium sulfate solution for 510 days. Visual examination, expansion and compressive strength loss of mortars in addition to characteristics of pore for the paste samples were regularly investigated. From the test results, it was clearly observed that the cement matrix with silica fume was very resistant to sulfate attack irrespective of the replacement levels of silica fume. However, the severe deterioration due to sulfate attack was found in cement matrix without silica fume.