• Title/Summary/Keyword: 팽연화

Search Result 6, Processing Time 0.018 seconds

Evaluation on the Physical and Chemical Properties of Expanded Rice Hulls as Hydroponic Culture Medium (양액재배용 팽연화 왕겨 배지의 이화학적 특성 구명)

  • 김경희;임상현;남궁양일;유근창
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was carried out to investigate appropriate processing conditions for expanded rice hulls to be used as a medium material in nutrient cultures. The water holding capacity of expanded rice hulls produced by using a domestic grinder with 8 mm gap and 3 mm cutter height was 271.0, and the bulk density and CEC were 0.19g·m-3 and 37.0 cmol·kg-1, respectively. These values are higher than those of perilte. However, geometric mean diameter (GMD) of expanded rice hulls was 1.01mm which was smaller than that of perlite, indicating unfavorable porosity. After supplying nutrient solution, the faster water percolation in expanded rice than perlite required more frequent water supply. There was no significant difference in tomato fruit yield between expanded rice hull and perlite. The pH increase and the lack of nitrogen in early stage of culture are to be solved in the future.

  • PDF

A Study on the possibility of using wood pellets of rice husk through the addition combusion improver and development of expansion technology (연소촉진제 첨가 및 팽연화 기술 개발을 통한 왕겨의 목재펠릿 사용 가능성 연구)

  • Kim, Wanbae;Oh, Doh Gun;Ryu, Jae Sang;Jung, Yeon-Hoon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1678-1686
    • /
    • 2020
  • This study attempted to derive the possibility of using wood pellet using rice husk, which is an agricultural byproduct, and tried to improve the lower calorific value of rice hulls thorough expansion technology and combustion additives. In the physical and chemical analysis of rice husk, the result was obtained that the chlorine content was 0.09%, which did not meet the wood pellet quality standard of Korea. When making rice hulls into expanded rice husk through the expansion technology, the chlorine content decreased, resulting in a product of 0.02%, which is equivalent to the wood pellet standard of Korea, and the calorific value was also increased to 4,280 kcal/kg compared to the existing 3,780 kcal/kg. To obtain a product of 5,000 kcal/kg or more, borax, hydrogen peroxide, and sodium hydroxide was used as combustion improver. However the improvement in calorific value was insufficient. After conversion to coffee oil path using coffee grounds, which is a waste resource biomass, it is mixed into an expanded rice husk, and when the product is analyzed, the coffee oil 15 wt% mixed product shows an excess of 4,949 kcal/kg. When using rice husk, an agricultural byproduct, as wood pellets, it is considered desirable to use waste resources to improve the calorific value, and according to the results of this study, when mixing coffee oil, rice husk can be sufficiently used as wooden pellets.

Durability of the Expanded Rice Hull as a Hydroponic Culture Medium (양액재배용 팽연화 왕겨의 적정 사용기간)

  • 임상현;김경희;안문섭;유근창
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.106-110
    • /
    • 2001
  • In an effort to evaluate the economic value and durability of the expanded rice hull as substrates, changes in the physical and chemical properties of material and plant growth in that substrate were studied. Using and electron microscope, the structure of used and new expanded rice hull substrate was examined. Considerable decomposition was found in the substrate which had been used one to three times. Compactness and lowered porosity in the used substrates were probably caused by decomposition. The results of cation analysis showed the possible destruction of cell wall of rice hulls. Abundant $Ca^{2+}$ in the substrates used for two to three times also indicated the possibility of decomposition. In tomato yield comparison, 15.2% more yield of tomato fruit in a new substrates indicated the negative effects of decomposition of one-time used substrates. Yield decreased in the substrates used for three times. if perlite substrates is used for three years before renewal and the cost of the perlite renewal is counted. 65.3% saving in the cost will be realized with the use of an expanded rice hull substrate. Another positive effect of the expanded rice hull substrate is the decrease of environmental contamination.n.

  • PDF

Studies on the Nutri-Culture of Major Wild Vegetable Ligularia fischeri Turcz I. Growth and Yield of Ligularia fischeri Turcz. by Media, Amount of Media and Planting Density in Nutri-Culture (곰취의 양액재배 기술 개발 I. 배지종류 , 배지량 , 재식밀도에 따른 곰취의 생육 및 수량)

  • 홍정기
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.401-410
    • /
    • 1997
  • This experiment was conducted to investigate the opimum media, media amount and planting density of nutri-culture for the high quality and yield of wild vegetable, Liguliaria fischeri Turez. The fried rice hull was recognized best media among perlite, sand and fried rice hull for nutri-culture of Ligularia fischeri Turcz. The yield on fried rice hull media at early growing stage was lower, but higher than in other media at late growing stage. Therefore, total yield in fried rice hull media was 15-29% higher than that of the existing perlite media. Growth and yield of Ligularia fischeri Turcz. were not significantly different between medium amounts, therefore considering economical efficiency and stability, the optimum medium amount was 105 $\iota/m^3$, Yield by planting density increased in the high density and 50 plants/$m^2$ was considered as proper planting density in nutri-culture of Liguliaria fishcheri Turcz.

  • PDF

Improvement of Method for Supplying the Nutrient Solution at Expanded Rice Hull Substrates during Hydrophonic Culture of Tomato Plants (토마토 양액재배시 팽연화 왕겨 배지에 적합한 급액방법 개선)

  • 김경희;임상현;김성일;유근창
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.101-105
    • /
    • 2001
  • Plant roots are affected by the root zone environment rather than substrate material itself. It is important to provide a suitable environment for the roots by amending the substrate and adjusting supply of the nutrient solution. In an expanded rice hull substrates, 1.5 L nutrient solution was supplied on each day at different frequency. In rice hull substrate, plant growth and yield were the greatest in the treatment where a 1.5L nutrient solution was supplied as 24 equal aliquots, wheres in perlite substrate plant growth and yield were the greatest in the treatment with 16 aliquots. Nitrogen deficiency symptoms caused by early decomposition of rice hulls by microorganisms was recovered by increasing solution EC from 1.7 to EC 2.0 dS.m$^{-1}$ for 25 days after planting. Plant growth and yield increased in the treatment of Ec 3.0 dS.m$^{-1}$ , but the cause for this increase is not clear.

  • PDF

Stabilization of Rhizosphere pH during Tomato Cultivation Using Expanded Rice Hull Substrate (양액재배용 평연화 왕겨 배지의 근권 pH 안정화)

  • 임상현;김경희;전신재;유근창
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 2001
  • In countries that consumes rice as a main staple, rice hulls are natural resources composed of a large amount of organic compounds and high uniformity in size. Rice hulls are expanded to get rid of a defect in untreated rice hulls and to be used as a hydroponic substrate. Research on rice hulls is continuing for the agricultural application. This research was conducted to stabilize rhizosphere pH of the expanded rice hull substrates because of high pH caused by repeated use in ERH(expanded ride hull) substrates and without increasing the cost of developing new substrates. Sphagnum peatmoss (pH 3.0-4.0) wee mixed with the expanded rice hull substrate in the ratio of 10% (v/v), and this ratio kept the pH range of 6.0 to 6.5 in the root area of tomato plants during growth and at the time of harvest of tomato fruits. Also absorbtion of nutrients was highly increased. The yield increased from 1,051 to 1,266 kg per tomato plant which were harvested by two clusters.

  • PDF