• Title/Summary/Keyword: 팬코일 유닛

Search Result 5, Processing Time 0.021 seconds

Experimental Study on Heat Transfer and Pressure Drop of Heat Exchangers for Cooling Fan Coil Unit (냉방용 팬코일 유닛 열교환기의 열전달 및 압력강하 특성 실험연구)

  • Kwon, Young-Chul;Ko, Kuk-Won;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.599-604
    • /
    • 2008
  • An experimental study has been performed to investigate the air-side capacity and pressure drop of the fin-tube heat exchanger for a fan coil unit under a cooling condition. The experimental data of five kinds of slit fin-tube heat exchangers were measured using an air-enthalpy calorimeter and a constant temperature water bath. Cooling capacities at the air and water rating flow rates were larger at the lower inlet water temperature. With increasing the water flow rate, the cooling capacity increased at the constant rate. Under the lower inlet water temperature, since the condensate was generated more on the fin-tube surface, the air-side pressure drop of the heat exchanger was larger.

Effect of Operating Conditions of a Fan-Coil Unit with an Oval Tube Type Heat Exchanger on Non-Dimensional Performance Coefficient (타원관 열교환기를 적용한 팬코일 유닛의 운전 조건이 무차원 성능계수에 미치는 영향)

  • Yoon, Jaedong;Lee, Younghoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effect of operating conditions of fan-coil unit with an oval tube type heat exchanger on its non-dimensional performance coefficient has been investigated. Pressure drops and heat transfer rates were measured under heating condition for various water flow rates, inlet temperatures and wind speeds. As a non-dimensional performance coefficient, Colburn j-factor was evaluated. The results show that the most sensitive parameter on heat flux is the inlet temperature, which affects the heat flux 4.7 and 7.2 times more than the wind speed and water flow rate, respectively. On the other hand, the Colburn j-factor as a non-dimensionalized index decreases with the wind speed, and has an maximum when the wind speed is about 1 m/s. the Colburn j-factor increases slowly with the water flow rate and inlet temperature but at a certain range of inlet temperature, the opposite phenomenon is found.

Performance Test of a Fan Coil with an Oval-Type Heat Exchanger (타원관 열교환기를 적용한 팬코일 성능 시험)

  • Yoon, Jeadong;Lee, Seunghyun;Sung, Jeayong;Lee, Myeong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.67-71
    • /
    • 2014
  • In this study, a fan coil unit with an oval-type heat exchanger has been developed. The performance of the present fan coil unit has been investigated, by comparison with the previous fan coil unit with a circular-type heat exchanger. For the fan coil unit with circular- and oval-type heat exchangers, the heat flux and pressure loss through the heat exchangers were measured at standard operating conditions. In addition, the wind speeds exhausted from the fan coil units were compared, for the same fan motor operation. The experimental results show that the average wind speed of the oval-type heat exchanger is 20 percent higher than that of the circular-type heat exchanger. The heat flux in the oval-type heat exchanger is enhanced by 40% or more, over the circular-type heat exchanger.

항균처리를 한 공조기기의 항균성능 평가방법과 평가결과

  • Miura, Kunio;Takatsuka, Takesi;Yanagi, U;Yamazaki, Shoji
    • Air Cleaning Technology
    • /
    • v.22 no.2
    • /
    • pp.40-49
    • /
    • 2009
  • Aluminum thin plate coated with epoxy resin containing about 20wt% brass powder, was applied to fins of heat exchanger. We carried out a series of detailed examinations to evaluate the anti-bacterial performance of the plate and heat exchanger (fan coil unit). In the presence of water or moisture, copper ions which have an anti-bacterial ability eluted from brass powder and showed sufficient effects on many kinds of bacteria. We also evaluated the anti-bacterial performance quantitatively by use of the index API (Anti-bacterial Performance Index) which has already been proposed by authors.

  • PDF

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.