• Title/Summary/Keyword: 패턴 서치 방법

Search Result 5, Processing Time 0.015 seconds

Blade Shape Optimization of Wind Turbines Using Genetic Algorithms and Pattern Search Method (유전자 알고리즘 및 패턴 서치 방법을 이용한 풍력 터빈 블레이드의 형상 최적화)

  • Yi, Jin-Hak;Sale, Danny
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.369-378
    • /
    • 2012
  • In this study, direct-search based optimization methods are applied for blade shape optimization of wind turbines and the optimization performances of several methods including conventional genetic algorithm, micro genetic algorithm and pattern search method are compared to propose a more efficient method. For this purpose, the currently available version of HARP_Opt (Horizontal Axis Rotor Performance Optimizer) code is enhanced to rationally evaluate the annual energy production value according to control strategies and to optimize the blade shape using pattern search method as well as genetic algorithm. The enhanced HARP_Opt code is applied to obtain the optimal turbine blade shape for 1MW class wind turbines. The results from pattern search method are compared with the results from conventional genetic algorithm and also micro genetic algorithm and it is found that the pattern search method has a better performance in achieving higher annual energy production and consistent optimal shapes and the micro genetic algorithm is better for reducing the calculation time.

Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method (새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선)

  • Park, Sangmin;Yi, Jin-Hak;Cho, Cheol-Ho;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.285-295
    • /
    • 2020
  • In the case of small observation towers located at sea, it is necessary to confirm the change in dynamic characteristics due to the influence of environmental loads. In this study, the dynamic characteristics were analyzed and the numerical analysis model was designed through field dynamic response measurement on the Mangyeong Offshore Observation Tower (Mangyeong Tower) located near the Saemangeum Embankment. As a result of the measurement, the natural frequency was found to increase slowly as the tide level is lowered. In addition, it was confirmed that the same mode has two frequencies, which was judged to be a phenomenon in which the natural frequency was partially increased when the pile and the ground contacted by scouring. For numerical analysis, the upper mass, artificial fixity point, scour depth and fluid influences are reflected in the structural characteristics of the Mangyeong Tower. In addition, the model updating from the estimated natural frequency and pattern search algorithm was performed. From the model updating, it is expected that it can be applied to future studies on stability of Mangyeong Tower.

Learning and Propagation Framework of Bayesian Network using Meta-Heuristics and EM algorithm considering Dynamic Environments (EM 알고리즘 및 메타휴리스틱을 통한 다이나믹 환경에서의 베이지안 네트워크 학습 전파 프레임웍)

  • Choo, Sanghyun;Lee, Hyunsoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.335-342
    • /
    • 2016
  • When dynamics changes occurred in an existing Bayesian Network (BN), the related parameters embedding on the BN have to be updated to new parameters adapting to changed patterns. In this case, these parameters have to be updated with the consideration of the causalities in the BN. This research suggests a framework for updating parameters dynamically using Expectation Maximization (EM) algorithm and Harmony Search (HS) algorithm among several Meta-Heuristics techniques. While EM is an effective algorithm for estimating hidden parameters, it has a limitation that the generated solution converges a local optimum in usual. In order to overcome the limitation, this paper applies HS for tracking the global optimum values of Maximum Likelihood Estimators (MLE) of parameters. The proposed method suggests a learning and propagation framework of BN with dynamic changes for overcoming disadvantages of EM algorithm and converging a global optimum value of MLE of parameters.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Tracing the Development and Spread Patterns of OSS using the Method of Netnography - The Case of JavaScript Frameworks - (네트노그라피를 이용한 공개 소프트웨어의 개발 및 확산 패턴 분석에 관한 연구 - 자바스크립트 프레임워크 사례를 중심으로 -)

  • Kang, Heesuk;Yoon, Inhwan;Lee, Heesan
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.131-150
    • /
    • 2017
  • The purpose of this study is to observe the spread pattern of open source software (OSS) while establishing relations with surrounding actors during its operation period. In order to investigate the change pattern of participants in the OSS, we use a netnography on the basis of online data, which can trace the change patterns of the OSS depending on the passage of time. For this, the cases of three OSSs (e.g. jQuery, MooTools, and YUI), which are JavaScript frameworks, were compared, and the corresponding data were collected from the open application programming interface (API) of GitHub as well as blog and web searches. This research utilizes the translation process of the actor-network theory to categorize the stages of the change patterns on the OSS translation process. In the project commencement stage, we identified the type of three different OSS-related actors and defined associated relationships among them. The period, when a master commences a project at first, is refined through the course for the maintenance of source codes with persons concerned (i.e. project growth stage). Thereafter, the period when the users have gone through the observation and learning period by being exposed to promotion activities and codes usage respectively, and becoming to active participants, is regarded as the 'leap of participants' stage. Our results emphasize the importance of promotion processes in participants' selection of the OSS for participation and confirm the crowding-out effect that the rapid speed of OSS development retarded the emergence of participants.

  • PDF