우리나라 과학교육에서는 과학 창의성의 계발을 강조하고 있다. 본 연구에서는 과학 창의성으로서 과학자들의 문제 발견에서 나타나는 패턴을 탐색하는데 목적을 두었다. 사례별 당시의 과학사적 상황, 문제 발견의 과정 및 문제 해결에 대한 내용을 구체적으로 논의하였다. 연구 결과, 과학자 10명이 과학사적 사건을 발견할 때 특징적으로 나타내는 문제 발견의 패턴은 다음과 같은 5가지 패턴으로 발견되었다. 패턴 1의 경우는 당시의 이론이나 설명이 불충분하거나 모순 또는 오류를 발견함에 의해 과학적 문제를 발견하는 것으로, 여기에는 라부아지에, 멘델, 왓슨의 문제 발견이 포함되었다. 패턴 2의 경우는 당대의 지식으로는 설명되지 않는 이상한 현상을 관찰함에 의해 문제를 발견하는 것으로, 여기에는 러더퍼드와 뢴트겐의 문제 발견이 포함되었다. 패턴 3의 경우는 비유 추론에 의해 문제를 발견하는 것으로, 카르노와 영의 문제 발견이 포함되었다. 패턴 4의 경우는 새롭게 발명된 관찰 또는 측정 기구를 사용하여 새로운 현상을 관찰함으로써 문제를 발견하는 것으로, 갈릴레이의 문제 발견이 포함되었다. 패턴 5의 경우는 연구 프로젝트 수행 중에 그 연구와 관련된 새로운 문제를 발견하는 것으로, 패러데이와 케플러의 문제 발견이 포함되었다.
발견된 Web Usage 패턴들은 분석하는 전문가에게는 불필요하고 흥미롭지 못해 의사결정에 도움이 못되는 경우가 많다. 따라서 발견된 패턴에 대한 도메인 전문가의 사전 Belief에 기반한 패턴 검증 과정이 필요하다. 발견된 패턴의 유용성 여부는 패턴의 Unexpectedness를 측정함으로써 결정할 수 있다. 본 논문에서는 패턴의 Unexpectedness를 전문가의 Belief에 기반하여 검증하기 위한 새로운 방법론 제안한다. 발견된 패턴과 전문가 Belief를 매칭 알고리즘을 이용하여 패턴을 4가지(완전일치, 조건부 일치, 결과부 일치, 완전 불일치)로 분류하는 1차 검증과 1차 검증 결과의 4가지 분류데이터를 통계적 추론 방법인 Dempster-chafer에 적용한 2차 검증으로 나뉜다. 1차 검증 과정은 패턴의 분류 용이성을 부여하나 패턴의 Unexpectedness에 대한 신뢰성을 제공하지 못한다. 이 문제점을 2차 검증 과정을 통해 해결한다.
데이터마이닝 분야에서 시계얼 데이터(time-series data)내에서 숨어 있는 순차패턴의 발견은 상품(Items)이나 어떤 사건(Event)과 같이 데이터의 특징이 명확한 대상에 대한 연구는 많이 되어왔으나 수치 값을 가지는 시계열 데이터에서 이들 내부에 숨어 있는 패턴을 발견하는 것은 최근에 관심을 가지게 되었다. 우리는 시계열 데이터를 시간적 변화에 따라 값의 변화 경향(Trend)이 같은 데이터 그룹을 패턴 요소인 벡터 (Vestor)로 표현하여 이들을 이용해서 흥미로운 패턴들을 발견한다. 이와 같은 벡터적인 표현으로 우리는 벡터들 간의 포함관계를 적용해 모든 가능한 형태의 패턴 발견을 목적으로 한다. 또한 경향성을 가진 패턴 요소를 사건(Event)과 같이 취급함으로써 다양한 종류의 시계열 데이터가 동시에 발생될 때 이들 상호간에 연관된 시간적 패턴을 찾을 수 있다. 따라서 이 연구에서 제안하는 경향성을 기초로 한 순차패턴의 탐식은 기업내부의 판매실적의 변화 패턴이나, 고객의 구매 행동분석에 적용이 가능하리라 여겨진다
시차를 두고 발생한 사건속에서 잠재해있는 패턴을 발견하는 연속패턴(sequential pattern) 생성기술은 데이터 마이닝 분야에서 최근 관심을 모으고 있는 분야이다. 본 연구는 정보이론을 이용하여 데이터베이스로부터 연속패턴을 자동으로 발견하는 방법에 관한 내용이다. 본 연구에서 제시하는 방법은 기존의 방법과는 달리 테이블내의 모든 속성간의 연속패턴 관계를 탐지할 수 있으며 헬링거(Hellinger) 변량을 이용하여 발견된 연속패턴들의 중요도를 측정할 수 있다. 또한 헬링거 변량의 함수적인 특성을 분석하여 연속패턴 추출의 복잡도를 줄이기 위한 두 가지의 법칙이 제안되었다.
본 논문에서 최신구간을 활용하여 패턴의 최신성을 보장하고 최신구간내 패턴의 누락 없이 모든 패턴을 발견할 수 있는 점진적 로그 분석 기법을 제안한다. 즉, 주기마다 최신구간이 이동되면서, 동시에 패턴의 최신성 여부가 결정되고, 이동된 최신구간내 패턴이 될 후보 패턴을 미리 예측하여 보다 합리적인 패턴 관리할 수 있다. 따라서 일반적인 점진적 로그 분석 기법에서 간과된 대량의 로그에 숨겨진 패턴은 적어도 해당 최신구간내에서 모두 발견될 수 있고 최신성도 보증된다.
데이터 마이닝에서 연속패턴(sequential pattern) 생성기술은 시차를 두고 발생한 사건들에 대하여 잠재해있는 패턴을 발견하는 기술을 의미한다. 본 연구는 정보이론을 이용하여 데이터베이스로부터 연속패턴을 자동으로 발견하는 방법에 관한 내용이다. 기존의 방법들이 한 속성내에서의 연속패턴만을 탐지하는 일차원 연속패턴을 생성하는데 비하여 본 연구에서 제시하는 방법은 데이터베이스내의 모든 속성간의 연속패턴 관계를 탐지할 수 있는 다차원 연속패턴을 생성할 수 있다. 본 연구에서는 연속패턴 생성을 위하여 헬링거(Hellinger) 변량을 사용하였으며 이를 이용하여 발견된 연속패턴들의 중요도를 측정할 수 있었다. 또한 헬링거 변량의 함수적인 특성을 분석하여 연속패턴 추출의 복잡도를 줄이기 위한 두 가지의 법칙이 제안되었고 다수의 실험 데이터를 통하여 다차원의 연속패턴을 생성할 수 있음을 보였다.
웹 사용 마이닝은 데이터마이닝을 바탕으로 사용자의 로그 파일 정보를 이용하여 웹이 이용되는 패턴을 발견한다. 이를 이용하여 웹을 개선하여 사용자들이 보다 빨리 원하는 내용을 검색할 수 있도록 할 수 있으며 시스템 관리자에게는 효율적인 웹 구조를 인한 정보를 제공할 수 있다. 웹 사용 마이닝에서 사용하는 데이터는 성형화되어 있지 않으며 웹 사용 패턴을 분석하는데 방해가 되는 잡음 데이터까지 포함하고 있다. 이것은 기존에 개발된 여러 데이터마이닝 기법을 적용하는데 어려움으로 작용한다. 이러한 어려움을 해결하기 위해 본 논문에서는 새로운 방법을 도입한 SPMiner을 .제안한다. SPMiner는 웹의 구조를 이용하여 로그 파일의 전처리 과정을 줄이며 사용자의 탐색 패턴 분석을 효율적으로 수행 할 수 있는 시스템이다. SPMiner는 WebTree 에이전트를 이용하여 웹 사이트 구조를 분석하여 WebTree를 생성하고 사용자 로그 파일을 분석하여 각 웹 페이지의 사용빈도에 대한 정보를 추출한다. WebTree와 로그 파일에서 추출된 웹 페이지에 대한 정보는 SPMiner에 의해 패턴을 분석할 퍼 이용될 수 있는 형태인 WebTree$^{+}$로 병합된다 WebTree$^{+}$는 패턴 발견을 쉽게 해주며 사용자에게 추천할 정보나 웹 페이지를 능동적으로 추천할 수 있게 만들어 준다.
이 논문에서는 시간지원 데이터베이스를 대상으로 하여 시간 간격과 시간 위상을 지닌 데이터에서의 정보를 탐사한다. 그리고 시간지원 데이터베이스에서의 시간 정보 유형을 제시하고 이에 따라 탐사되는 패턴의 유형을 분류한다. 또한 시간에 대한 계층적 구조인 시간 계층을 도입하고 이를 이용하여 각 항목의 유효시간 정보를 일반화시킨다. 시간 계층에 의한 유효시간의 일반화에 있어서 발생하는 시간 정보 유형의 변화와 패턴 유형의 변화를 살펴본다. 그리고 시간 간격 변화에 따른 패턴 정보의 발견을 예를 들어 기술한다. 이 논문에서는 시간 계층을 이용하여 시간 간격을 변화시킬 경우 발견되는 새로운 유형의 패턴 지식을 탐사하고 이를 제시한다.
최근 처리기와 입출력 시스템의 속도 차이가 점점 커짐에 따라 버퍼 캐쉬의 효율적인 관리가 더욱 중요해지고 있다. 버퍼 캐쉬는 블록 교체 정책과 선반입 정책에 의해 관리되며, 각 정책은 버퍼 캐쉬에서 블록의 가치 즉 어떤 블록이 더 가까운 미래에 참조될 것인가를 결정해야 한다. 블록의 가치는 응용들의 블록 참조 패턴의 특성에 기반하며, 블록 참조 패턴의 특성에 대한 정확한 분석은 올바른 결정을 가능하게 하여 버퍼 캐쉬의 효율을 높일 수 있다. 본 논문은 각 응용들의 블록 참조 패턴에 대한 특성을 분석하고 이를 자동으로 발견하는 기법을 제안한다. 제안된 기법은 블록의 속성과 미래 참조 거리간의 관계를 이용해 블록 참조 패턴을 발견한다. 이 기법은 2 단계 파이프라인 방법을 이용하여 온라인으로 참조 패턴을 발견할 수 있으며, 참조 패턴의 변화가 발생하면 이를 인식할 수 있다. 본 논문에서는 8개의 실제 응용 트레이스를 이용해 블록 참조 패턴의 발견을 실험하였으며, 제안된 기법이 각 응용의 블록 참조 패턴을 정확히 발견함을 확인하였다. 그리고 발견된 참조 패턴 정보를 블록 교체 정책에 적용해 보았으며, 실험 결과 기존의 대표적인 블록 교체 정책인 LRU에 비해 최대 57%까지 디스크 입출력 횟수를 줄일 수 있었다.Abstract As the speed gap between processors and disks continues to increase, the role of the buffer cache located in main memory is becoming increasingly important. The buffer cache is managed by block replacement policies and prefetching policies and each policy should decide the value of block, that is which block will be accessed in the near future. The value of block is based on the characteristics of block reference patterns of applications, hence accurate characterization of block reference patterns may improve the performance of the buffer cache. In this paper, we study the characteristics of block reference behavior of applications and propose a scheme that automatically detects the block reference patterns. The detection is made by associating block attributes of a block with the forward distance of the block. With the periodic detection using a two-stage pipeline technique, the scheme can make on-line detection of block reference patterns and monitor the changes of block reference patterns. We measured the detection capability of the proposed scheme using 8 real workload traces and found that the scheme accurately detects the block reference patterns of applications. Also, we apply the detected block reference patterns into the block replacement policy and show that replacement policies appropriate for the detected block reference patterns decreases the number of DISK I/Os by up to 57%, compared with the traditional LRU policy.
대용량 데이터베이스로부터 순차 패턴을 발견하는 문제는 지식 발견 또는 데이터 마이닝(Data Mining) 분야에서 주요한 패턴 추출 문제이다. 순차 패턴은 추출 기법에 있어 연관 규칙의 Apriori 알고리즘과 비슷한 방식을 사용하며 그 과정에서 시퀀스는 해쉬 트리 구조를 통해 다루어 진다. 이러한 해쉬 트리 구조는 항목들의 정렬과 데이터 시퀀스의 지역성을 무시한 저장 구조로 단순 검색을 통한 다수의 복잡한 포인터 연산수행을 기반으로 한다. 본 논문에서는 이러한 해쉬 트리 구조의 단정을 보완한 다단게 선형 배치 트리(MLLT, Multi-level Linear Location Tree)를 제안하고, 다단계 선형 배치 트리를 이용한 효율적인 마이닝 메소드(MLLT-Join)를 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.