• Title/Summary/Keyword: 패턴 발견

Search Result 590, Processing Time 0.026 seconds

An Analysis on Problem-Finding Patterns of Well-Known Creative Scientists (잘 알려진 창의적 과학자들의 과학적 문제 발견 패턴 분석)

  • Kim, Youngmin;Seo, Hae-Ae;Park, Jongseok
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1285-1299
    • /
    • 2013
  • Nurturing students' scientific creativity is considered an important element in science education in Korea. The study aims to explore patterns displayed by well-known scientists in their quest for problem finding. Each case of scientists' course of problem solving is described in terms of historical background, a process of problem finding, and a process of problem solving. There are five patterns from ten scientists which are as follows: Pattern 1 is that scientists find problems from insufficiencies and/or errors from explanation of theories at the time and the related cases are A. Lavoisier, G. Mendel, and J. Watson. Pattern 2 shows that scientists find a problem because of strange phenomena unexplained by theories at the time, and here important case studies are E. Rutherford and W. R$\ddot{o}$ntgen. Pattern 3 demonstrates that scientists find a problem from analogical reasoning between known theories and unknown science phenomena. The cases include S. Carnot and T. Young. Pattern 4 points to the fact that scientists find a problem while they utilize a newly invented experimental instrument. Here, G. Galilei is an important example. Pattern 5 establishes that scientists happen to find a problem while they conduct research projects. The works of M. Faraday and J. Kepler are prominent case studies related to this pattern.

Web Usage Patterns Validation Based on Expert Belief Using Statistical Reasoning (통계적 추론을 이용한 전문가 Belief기반의 Web Usage 패턴 검증)

  • Ko, Se-Jin;Ahn, Kye-Sun;Jeong, Jun;Lee, Phill-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.148-150
    • /
    • 2001
  • 발견된 Web Usage 패턴들은 분석하는 전문가에게는 불필요하고 흥미롭지 못해 의사결정에 도움이 못되는 경우가 많다. 따라서 발견된 패턴에 대한 도메인 전문가의 사전 Belief에 기반한 패턴 검증 과정이 필요하다. 발견된 패턴의 유용성 여부는 패턴의 Unexpectedness를 측정함으로써 결정할 수 있다. 본 논문에서는 패턴의 Unexpectedness를 전문가의 Belief에 기반하여 검증하기 위한 새로운 방법론 제안한다. 발견된 패턴과 전문가 Belief를 매칭 알고리즘을 이용하여 패턴을 4가지(완전일치, 조건부 일치, 결과부 일치, 완전 불일치)로 분류하는 1차 검증과 1차 검증 결과의 4가지 분류데이터를 통계적 추론 방법인 Dempster-chafer에 적용한 2차 검증으로 나뉜다. 1차 검증 과정은 패턴의 분류 용이성을 부여하나 패턴의 Unexpectedness에 대한 신뢰성을 제공하지 못한다. 이 문제점을 2차 검증 과정을 통해 해결한다.

  • PDF

Rule discovery for sequential patterns of trend from Time-Series (시계열 데이터로부터 경향성을 이용한 순차패턴의 탐색)

  • 오용생;남도원;장지숙;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.325-332
    • /
    • 2000
  • 데이터마이닝 분야에서 시계얼 데이터(time-series data)내에서 숨어 있는 순차패턴의 발견은 상품(Items)이나 어떤 사건(Event)과 같이 데이터의 특징이 명확한 대상에 대한 연구는 많이 되어왔으나 수치 값을 가지는 시계열 데이터에서 이들 내부에 숨어 있는 패턴을 발견하는 것은 최근에 관심을 가지게 되었다. 우리는 시계열 데이터를 시간적 변화에 따라 값의 변화 경향(Trend)이 같은 데이터 그룹을 패턴 요소인 벡터 (Vestor)로 표현하여 이들을 이용해서 흥미로운 패턴들을 발견한다. 이와 같은 벡터적인 표현으로 우리는 벡터들 간의 포함관계를 적용해 모든 가능한 형태의 패턴 발견을 목적으로 한다. 또한 경향성을 가진 패턴 요소를 사건(Event)과 같이 취급함으로써 다양한 종류의 시계열 데이터가 동시에 발생될 때 이들 상호간에 연관된 시간적 패턴을 찾을 수 있다. 따라서 이 연구에서 제안하는 경향성을 기초로 한 순차패턴의 탐식은 기업내부의 판매실적의 변화 패턴이나, 고객의 구매 행동분석에 적용이 가능하리라 여겨진다

  • PDF

An Information-Theoretic Method for Sequential Pattern Analysis (정보이론을 이용한 연속패턴생성방법)

  • 이창환;이소민
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.124-126
    • /
    • 2001
  • 시차를 두고 발생한 사건속에서 잠재해있는 패턴을 발견하는 연속패턴(sequential pattern) 생성기술은 데이터 마이닝 분야에서 최근 관심을 모으고 있는 분야이다. 본 연구는 정보이론을 이용하여 데이터베이스로부터 연속패턴을 자동으로 발견하는 방법에 관한 내용이다. 본 연구에서 제시하는 방법은 기존의 방법과는 달리 테이블내의 모든 속성간의 연속패턴 관계를 탐지할 수 있으며 헬링거(Hellinger) 변량을 이용하여 발견된 연속패턴들의 중요도를 측정할 수 있다. 또한 헬링거 변량의 함수적인 특성을 분석하여 연속패턴 추출의 복잡도를 줄이기 위한 두 가지의 법칙이 제안되었다.

  • PDF

Practical Use of Recent Section on Incremental Log Analysis technique (최신구간을 활용한 점진적 로그 분석 기법)

  • 김명순;박병준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.496-498
    • /
    • 2003
  • 본 논문에서 최신구간을 활용하여 패턴의 최신성을 보장하고 최신구간내 패턴의 누락 없이 모든 패턴을 발견할 수 있는 점진적 로그 분석 기법을 제안한다. 즉, 주기마다 최신구간이 이동되면서, 동시에 패턴의 최신성 여부가 결정되고, 이동된 최신구간내 패턴이 될 후보 패턴을 미리 예측하여 보다 합리적인 패턴 관리할 수 있다. 따라서 일반적인 점진적 로그 분석 기법에서 간과된 대량의 로그에 숨겨진 패턴은 적어도 해당 최신구간내에서 모두 발견될 수 있고 최신성도 보증된다.

  • PDF

Learning Multidimensional Sequential Patterns Using Hellinger Entropy Function (Hellinger 엔트로피를 이용한 다차원 연속패턴의 생성방법)

  • Lee, Chang-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.477-484
    • /
    • 2004
  • The technique of sequential pattern mining means generating a set of inter-transaction patterns residing in time-dependent data. This paper proposes a new method for generating sequential patterns with the use of Hellinger measure. While the current methods are generating single dimensional sequential patterns within a single attribute, the proposed method is able to detect multi-dimensional patterns among different attributes. A number of heuristics, based on the characteristics of Hellinger measure, are proposed to reduce the computational complexity of the sequential pattern systems. Some experimental results are presented.

Discovery and Recommendation of User Search Patterns from Web Data (웹 데이터에서의 사용자 탐색 패턴 발견 및 추천)

  • 구흠모;양재영;홍광희;최중민
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.287-296
    • /
    • 2002
  • 웹 사용 마이닝은 데이터마이닝을 바탕으로 사용자의 로그 파일 정보를 이용하여 웹이 이용되는 패턴을 발견한다. 이를 이용하여 웹을 개선하여 사용자들이 보다 빨리 원하는 내용을 검색할 수 있도록 할 수 있으며 시스템 관리자에게는 효율적인 웹 구조를 인한 정보를 제공할 수 있다. 웹 사용 마이닝에서 사용하는 데이터는 성형화되어 있지 않으며 웹 사용 패턴을 분석하는데 방해가 되는 잡음 데이터까지 포함하고 있다. 이것은 기존에 개발된 여러 데이터마이닝 기법을 적용하는데 어려움으로 작용한다. 이러한 어려움을 해결하기 위해 본 논문에서는 새로운 방법을 도입한 SPMiner을 .제안한다. SPMiner는 웹의 구조를 이용하여 로그 파일의 전처리 과정을 줄이며 사용자의 탐색 패턴 분석을 효율적으로 수행 할 수 있는 시스템이다. SPMiner는 WebTree 에이전트를 이용하여 웹 사이트 구조를 분석하여 WebTree를 생성하고 사용자 로그 파일을 분석하여 각 웹 페이지의 사용빈도에 대한 정보를 추출한다. WebTree와 로그 파일에서 추출된 웹 페이지에 대한 정보는 SPMiner에 의해 패턴을 분석할 퍼 이용될 수 있는 형태인 WebTree$^{+}$로 병합된다 WebTree$^{+}$는 패턴 발견을 쉽게 해주며 사용자에게 추천할 정보나 웹 페이지를 능동적으로 추천할 수 있게 만들어 준다.

  • PDF

Mining Generalized Temporal Patterns in Temporal Databases (시간지원 데이터베이스에서의 시간 계층을 이용한 일반화된 패턴 정보 탐사)

  • 이강태;이준욱;남광우;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.232-233
    • /
    • 1998
  • 이 논문에서는 시간지원 데이터베이스를 대상으로 하여 시간 간격과 시간 위상을 지닌 데이터에서의 정보를 탐사한다. 그리고 시간지원 데이터베이스에서의 시간 정보 유형을 제시하고 이에 따라 탐사되는 패턴의 유형을 분류한다. 또한 시간에 대한 계층적 구조인 시간 계층을 도입하고 이를 이용하여 각 항목의 유효시간 정보를 일반화시킨다. 시간 계층에 의한 유효시간의 일반화에 있어서 발생하는 시간 정보 유형의 변화와 패턴 유형의 변화를 살펴본다. 그리고 시간 간격 변화에 따른 패턴 정보의 발견을 예를 들어 기술한다. 이 논문에서는 시간 계층을 이용하여 시간 간격을 변화시킬 경우 발견되는 새로운 유형의 패턴 지식을 탐사하고 이를 제시한다.

Characteristics and Automatic Detection of Block Reference Patterns (블록 참조 패턴의 특성 분석과 자동 발견)

  • Choe, Jong-Mu;Lee, Dong-Hui;No, Sam-Hyeok;Min, Sang-Ryeol;Jo, Yu-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1083-1095
    • /
    • 1999
  • 최근 처리기와 입출력 시스템의 속도 차이가 점점 커짐에 따라 버퍼 캐쉬의 효율적인 관리가 더욱 중요해지고 있다. 버퍼 캐쉬는 블록 교체 정책과 선반입 정책에 의해 관리되며, 각 정책은 버퍼 캐쉬에서 블록의 가치 즉 어떤 블록이 더 가까운 미래에 참조될 것인가를 결정해야 한다. 블록의 가치는 응용들의 블록 참조 패턴의 특성에 기반하며, 블록 참조 패턴의 특성에 대한 정확한 분석은 올바른 결정을 가능하게 하여 버퍼 캐쉬의 효율을 높일 수 있다. 본 논문은 각 응용들의 블록 참조 패턴에 대한 특성을 분석하고 이를 자동으로 발견하는 기법을 제안한다. 제안된 기법은 블록의 속성과 미래 참조 거리간의 관계를 이용해 블록 참조 패턴을 발견한다. 이 기법은 2 단계 파이프라인 방법을 이용하여 온라인으로 참조 패턴을 발견할 수 있으며, 참조 패턴의 변화가 발생하면 이를 인식할 수 있다. 본 논문에서는 8개의 실제 응용 트레이스를 이용해 블록 참조 패턴의 발견을 실험하였으며, 제안된 기법이 각 응용의 블록 참조 패턴을 정확히 발견함을 확인하였다. 그리고 발견된 참조 패턴 정보를 블록 교체 정책에 적용해 보았으며, 실험 결과 기존의 대표적인 블록 교체 정책인 LRU에 비해 최대 57%까지 디스크 입출력 횟수를 줄일 수 있었다.Abstract As the speed gap between processors and disks continues to increase, the role of the buffer cache located in main memory is becoming increasingly important. The buffer cache is managed by block replacement policies and prefetching policies and each policy should decide the value of block, that is which block will be accessed in the near future. The value of block is based on the characteristics of block reference patterns of applications, hence accurate characterization of block reference patterns may improve the performance of the buffer cache. In this paper, we study the characteristics of block reference behavior of applications and propose a scheme that automatically detects the block reference patterns. The detection is made by associating block attributes of a block with the forward distance of the block. With the periodic detection using a two-stage pipeline technique, the scheme can make on-line detection of block reference patterns and monitor the changes of block reference patterns. We measured the detection capability of the proposed scheme using 8 real workload traces and found that the scheme accurately detects the block reference patterns of applications. Also, we apply the detected block reference patterns into the block replacement policy and show that replacement policies appropriate for the detected block reference patterns decreases the number of DISK I/Os by up to 57%, compared with the traditional LRU policy.

Mining Sequential Patterns Using Multi-level Linear Location Tree (단계 선형 배치 트리를 이용한 순차 패턴 추출)

  • 최현화;이동하;이전영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.70-72
    • /
    • 2003
  • 대용량 데이터베이스로부터 순차 패턴을 발견하는 문제는 지식 발견 또는 데이터 마이닝(Data Mining) 분야에서 주요한 패턴 추출 문제이다. 순차 패턴은 추출 기법에 있어 연관 규칙의 Apriori 알고리즘과 비슷한 방식을 사용하며 그 과정에서 시퀀스는 해쉬 트리 구조를 통해 다루어 진다. 이러한 해쉬 트리 구조는 항목들의 정렬과 데이터 시퀀스의 지역성을 무시한 저장 구조로 단순 검색을 통한 다수의 복잡한 포인터 연산수행을 기반으로 한다. 본 논문에서는 이러한 해쉬 트리 구조의 단정을 보완한 다단게 선형 배치 트리(MLLT, Multi-level Linear Location Tree)를 제안하고, 다단계 선형 배치 트리를 이용한 효율적인 마이닝 메소드(MLLT-Join)를 소개한다.

  • PDF