사람은 한 장소를 방문할 때 순환 패턴이 있으며, 이 패턴에 여러 싸이클의 경향이 있다. 요즘은 스마트폰 및 기타 휴대용 장치로 개인 이동성 데이터를 수집하는 것이 가능하다. 이러한 장치는 다양한 위치 데이터를 수집하고 여러가지 방법으로 분석할 수 있게 해준다. 위치 수집기를 기반으로 지구 위치 데이터에서 추출된 사람의 이동성 모델을 수립하고, 위치 클러스터를 방문자의 순환 패턴을 조사할 수 있다. 수년 동안 수집된 개인의 이동성 모델을 토대로 클러스터 재방문 시간을 계산 후 분석하여 그래프로 시각화하였다. 시간 순서의 위치 클러스터와 방문 클러스터에 대한 위치 데이터는 1 분 단위로 측정된다. 전체 데이터 방문 횟수는 15 분마다 정규화하고, 자원 봉사자의 다양한 지리적 위치 데이터 셋에 대해 방문의 순환 패턴은 자기 상관, 자기 공분산 및 재방문 시간으로 살펴볼 수 있다.
본 논문에서는 프린지 패턴을 생성하는 딥러닝 기반의 WGAN-GP 네트워크의 최적화 방법을 제안한다. 기존의 복소 프린지 패턴 생성을 위한 GAN 모델은 생성의 정확도뿐만 아니라 학습의 안정성이 다소 부족하였다. 이에 따라 WGAN-GP 등의 업그레이드 된 방법을 사용하였지만, 네트워크 구조 및 파라미터에 따른 최적화가 필요하다. 보다 정확도 높은 정확도를 가진 프린지 패턴 생성을 위해 learning rate decay 사용하여 학습된 결과를 epoch 별 그래프로 최적화 전의 결과와 비교하고, 홀로그램과 복원 결과에 대한 PSNR 을 비교한다.
모양 데이타는 이미지가 나타내는 의미를 가장 잘 반영하는 데이타로서 이미지 검색에 중요한 정보로 사용된다 특히 구조적으로 표현된 모양 특징은 모양이 갖는 기초적 특성과 그들간의 관계 정보를 잘 나타내므로 폭넓게 연구되고 있다. 그러나 대개의 구조적 모양 특징들은 그래프나 트리와 같은 구조로 표현되므로 모양 데이타 검색에서 효율적인 검색 시간을 보장할 수 없는 문제를 지니고 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 모양의 윤곽선 정보를 기반으로한 굴곡 기반 형태 그래프를 생성하고 이를 일반화한 구조로부터 모양을 클러스터링할 수 있는 키를 설계한다. 제안한 굴곡 기반 형태 그래프는 모양이 가지고 있는 윤곽선 특성과 영역의 형태적 특성을 모두 가지고 있다. 모양 검색은 단계적으로 이루어진다. 클러스터링을 통해 검색 공간을 축소하고 외부 굴곡 특징을 이용한 굴곡의 패턴 매칭을 통해 종합적인 유사도가 결정된다. 다양한 실험을 통해 굴곡 기반 형태 그래프와 클러스터링을 통해 검색 공간과 비용이 줄어드는 것을 보여준다.
패턴 인식의 분야에서 그래프는 복잡한 대상체의 표현 및 인식의 도구로서 많이 사용되지만, 그래프간의 유사성 비교에는 많은 시간이 소요될 뿐아니라 실제 입력되는 영상은 왜곡으로 인해 저장되어 있는 이상적인 영상과 동일함을 기대할 수 없으므로 유사한 정도를 판별하는 기준이 마련되어야만 한다. 이 논문에서는 행렬을 그래프의 표현 수단으로 사용하였다. 행렬은 표현이 간단하며, 정의되어 있는 연산을 통해 순서 배열 및 매칭 과정을 간단히 수행하루 수 있다. 이 때 그래프를 구성하는 노드(node)들을 기하학적 위치에 따라 순서 배열함으로써 그래프를 구성하는 노드들 사이의 대응 관계를 효율적으로 찾을 수 있도록 하였으며, 또한 왜곡으로 인하여 기호를 표현하는 그래프의 노드가 제대로 추출되지 못한 경우는 기호의 구조를 고려하여 보정해 줄 수 있는 분할 과정을 도입하여 해결하였다. 제안한 방법은 악보의 비음표 기호 인식을 통해 실험하였으며, 실험 결과 95% 정도의 인식률을 얻을 수 있었다.
본 논문에서는 그래프 패턴 인식을 신속히 처리하기 위한 새로운 자성 센서의 개발과 인식 시스템을 제안하고자 하였다. 그래픽을 입력받아 세션화와 균형화를 수행하는데 있어서 특징점의 사전 처리를 선결 수행함으로써 인식 속도를 증강하고 선처리된 특징점을 이용하여 끝점, 굴곡점, 분기점의 특징점을 별도로 추출하지 않는 방법으로 조사하여 모음이나 자음의 부분패턴의 그래프 사전을 비교하는 간단한 구조해석과 인식을 도모하였다. 본 논문의 성능 비교를 위하여 사용자의 필기체를 사전에 등록 인식하고 입력 필기체를 비교 인식하여 Unicode로 변환시켜 비교한 결과 70%의 초기 인식률에서 누적 인공학습 지능 처리 결과 95%의 이상의 인식률을 보여주고 있다.
본 논문에서는 알려진 악성코드로부터 악의적인 행위 패턴을 정의하는 방법을 제안하고, 이를 기반으로 변형된 악성코드의 검출 방법을 제안한다. 악의적인 행위 패턴에 대한 정의는 Cross Reference를 기반으로 블록화 한 후 실행코드 블록의 호출 관계에 따른 그래프를 이용하여 정의하였다. 그리고 변형된 악성코드에 대한 검출은 실행코드 내부에서 악의적인 행동 패턴을 찾음으로써 판단한다. 제안된 방법에 대한 실험결과 변형된 악성코드의 검출이 가능함을 확인하였다.
단백질 사이의 상호작용 네트워크(PPI network: Protein-Protein Interaction network)를 이용하여 단백질 기능을 예측 하는 것은 단백질 기능 예측 기법들 중에서 중요한 작용을 한다. 하지만 PPI를 이용한 단백질 기능 예측은 기능의 복잡도와 다양성으로 인해 제한적인 결과를 나타내 왔다. 따라서 본 논문에서는 기존의 연구들 보다 높은 정확도로 단백질 기능을 예측하기 위해 기능 예측을 하려는 단백질과 상호작용 하는 단백질들에 그래프 마이닝 기법을 적용하여 빈발 2-노드 상호작용 패턴을 찾고, 그 패턴을 이용하여 단백질 기능을 예측하는 접근법을 제안하였다. 실험데이터로 DIP(Database of Interacting Proteins)에서 제공하는 단백질 상호작용 데이터를 사용하였으며, 다른 기존의 단백질 기능 예측 기법들보다 높은 정확도를 보여주었다.
서울 수도권 지하철 승객들의 탑승 패턴의 특성을 이해하는 것은 효율적인 수도권 지하철 시스템을 입안하는 데 중요하기 때문에 대용량 교통카드 트랜잭션 데이터베이스에서 유용한 패턴을 탐사하거나 귀중한 패턴의 분류에 대한 연구가 진행되어오고 있다. 본 논문에서 새로운 지하철 탑승 분류를 정의하고 하루 약 천만 건 트랜잭션들로 구성된 교통카드 트랜잭션 데이터베이스로부터 지하철 승객들의 11 가지 탑승 패턴을 분류하는 알고리즘을 제안하였다. 제시된 알고리즘을 구현하여 탑승 패턴들을 분류하기 위하여 하루 동안의 교통카드 트랜잭션 데이터베이스에 적용하였다. 실험 결과에서 왕복-탑승 패턴, 통근 패턴, 예상치 못한 흥미로운 패턴들에 초점을 맞추어 분석하였다. 각 분류된 패턴에 대해서 시간대별로 승객수를 지하철 트랜잭션의 승차시간과 하차시간 기준으로 그래프로 설명하여 유용한 패턴의 특성을 이해하도록 하였다.
최근 다양한 공공데이터가 개방되고 있으며, 적절한 데이터 마이닝과 시각화 알고리즘을 통해 일반 시민에게 서비스 되고 있다. 이를 통해 정부와 지방자치단체는 공공 정책의 투명성과 효율성을 널리 알릴 수 있을 뿐 아니라, 일반 사용자들이 개방된 공공데이터를 재가공하여 서비스함으로써 관련 산업의 성장을 이끌고 있다. 공공데이터의 최종 사용자는 일반 시민이기 때문에, 누구나 손쉽게 이해할 수 있도록 공공데이터를 적절히 시각화하는 것이 무엇보다 중요하다. 본 연구에서는 공공데이터 비주얼라이제이션의 중요성을 널리 알리기 위해, 일반 국민이 관심을 가질만한 공공데이터로 UN 회원국의 투표 데이터를 고려한다. 외교와 교육 목적으로 그 활용 가치가 높고 데이터를 쉽게 얻을 수 있는 장점이 있다. 또한 적절한 데이터 마이닝과 시각화 과정을 거친다면, 일반 사용자들이 유엔 회원국 간의 투표 성향에 대한 통찰력을 쉽게 얻을 수 있다. 유엔 투표 데이터를 시각화하기 위해서는, 회원국 간의 투표성향 유사도를 측정하고, 이를 바탕으로 소셜 그래프를 구현한다. 그리고 그래프 레이아웃 알고리즘을 적용하여 그래프를 화면에 렌더링 하게 된다. 기존 방법을 이용하여 소셜 그래프를 비주얼라이제이션 할 경우에 그래프의 복잡도가 증가하여 유엔 회원국 간의 투표성향을 파악하는데 큰 어려움이 있다. 이러한 문제를 개선하기 위해, 본 논문에서는 친구 매칭(Friend-Matching), 친구-라이벌 매칭(Friend-Rival Matching), 버블힙(Bubble Heap) 알고리즘들을 차례로 제안한 다. 제안된 알고리즘을 바탕으로, 기존 그래프 비주얼라이제이션을 개선하여 일반 사용자들이 손쉽게 유엔 회원국 간의 투표성향과 관련된 특정 패턴이나 통찰력을 얻는데 큰 도움을 줄 것이다. 또한 웹에서 동작하는 프로토타입을 구현하여, 누구나 방문하여 테스트를 할 수 있다. 웹 페이지 주소: http://datalab.kunsan.ac.kr/politiz/un/
최근 전국 각 지역 AMI(Advanced Metering Infrastructure) 원격검침 시스템의 보급사업이 활성화되고 있으며, 전력수요 관리를 위한 양방향 통신 및 보안 요금제 기능 등 다양한 계량 기능을 제공하고 있다. 현재 AMI 시스템은 새로운 내부 IoT 장비 및 네트워크 규모의 증가로 인해 기존 RDB(Relational Database) 기반 장애 분석이 어렵다. 본 연구는 기존 RDB 데이터를 활용하는 새로운 GDB(Graph Database)기반 장애 분석 방법을 제안한다. 내부 임계치와 상태 값 등 누적된 데이터를 통해 새로운 장애 패턴의 상관관계를 분석한다. GDB 기반 시뮬레이션 결과 RDB에서 분석이 어려웠던 새로운 장애 패턴을 예측할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.