• Title/Summary/Keyword: 패턴 그래프

Search Result 195, Processing Time 0.021 seconds

A Study of Story Visualization Based on Variation of Characters Relationship by Time (등장인물들의 시간적 관계 변화에 기초한 스토리 가시화에 관한 연구)

  • Park, Seung-Bo;Baek, Yeong Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.119-126
    • /
    • 2013
  • In this paper, we propose and describe the system to visualize the story of contents such as movies and novels. Character-net is applied as story model in order to visualize story. However, it is the form to be accumulated for total movie story, though it can depict the relationship between characters. We have developed the system that analyzes and shows the variation of Character-net and characters' tendency in order to represent story variation depending on movie progression. This system is composed by two windows that can play and analyze sequential Character-nets by time, and can analyze time variant graph of characters' degree centrality. First window has a function that supports to find important story points like the scenes that main characters appear or meet firstly. Second window supports a function that track each character's tendency or a variation of his tendency through analyzing in-degree graph and out-degree. This paper describes the proposed system and discusses additional requirements.

The Bytecode Optimizer (바이트코드 최적화기)

  • 이야리;홍경표;오세만
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.73-80
    • /
    • 2003
  • The Java programming language is designed for developing effective applications in a heterogeneous network environment. Major problem in Java is its performance. many attractive features of Java make the development of software easy, but also make it expensive to support ; applications written in Java are often much slower than their counterparts written in C or C++. To use Java`s attractive features without the performance penalty, sophisticated optimizations and runtime systems are required. Optimising Java bytecode has several advantages. First, the bytecode is independent of any compiler that is used to generate it. Second, the bytecode optimization can be performed as a pre=pass to Just-In-Time(JIT) compilation. Many attractive features of Java make the development of software easy, but also make it expensive to support. The goal of this work is to develop automatic construction of code optimizer for Java bytecode. We`ve designed and implemented a Bytecode Optimizer that performs the peephole optimization, bytecode-specific optimization, and method-inlining techniques. Using the Classfile optimizer, we see up to 9% improvement in speed and about 20% size reduction in Java class files, when compared to average code using the interpreter alone.

Regression Testing of Software Evolution by AOP (AOP를 이용하여 진화된 프로그램의 회귀테스트 기법)

  • Lee, Mi-Jin;Choi, Eun-Man
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.495-504
    • /
    • 2008
  • Aspect Oriented Programming(AOP) is a relatively new programming paradigm and has properties that other programming paradigms don't have. This new programming paradigm provides new modularization of software systems by cross-cutting concerns. In this paper, we propose a regression test method for program evolution by AOP. By using JoinPoint, we can catch a pointcut-name which makes it possible to test the incorrect pointcut strength fault and the incorrect aspect precedence fault. Through extending proof rules to aspect, we can recognize failures to establish expected postconditions faults. We can also trace variables using set() and get() pointcut and test failures to preserve state invariant fault. Using control flow graph, we can test incorrect changes in control dependencies faults. In order to show the correctness of our proposed method, channel management system is implemented and tested by using proposed methods.

Web-based microarray analysis using the virtual chip viewer and bioconductor. (MicroArray의 직관적 시각적 분석을 위한 웹 기반 분석 도구)

  • Lee, Seung-Won;Park, Jun-Hyung;Kim, Hyun-Jin;Kang, Byeong-Chul;Park, Hee-Kyung;Kim, In-Ju;Kim, Cheol-Min
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.198-201
    • /
    • 2005
  • DNA microarray 칩은 신약 개발, 유전적 질환 진단, Bio-molecular 상호작용 연구, 유전자의 기능연구 등 폭넓게 사용되고 있다. 이 논문은 cDNA mimcroarray 데이터를 분석하기 위한 웹형태의 시스템 개발에 대한 내용을 다룬다. 하나의 cDNA microarray에는 수 백에서 수 만개의 유전자가 심어져 있으며, 데이터를 분석할 때 대량의 데이터와 다양한 형태의 오류로 인해서 데이터간의 차이를 보정하는 분석 도구와 통계적 기법들이 사용되어야 한다. 본 논문에서는 가상 칩 뷰어를 이용하여 실제 microarray 데이터의 foreground intensity에서 백그라운드의 intensity를 제거하여 일반화된 칩 이미지를 생성한다. 이 가상 칩 뷰어는 여러 가지 필터효과와 서로 다른 두 형광의 차이를 조정하는 global normalization 기법을 사용하여 발현 유전자 분석을 시각적으로 할 수 있고, 중복된 마이크로어레이 칩 데이터를 통하여 시간이 많이 걸리는 분석전 칩의 유효성을 검토할 수 있다. 칩 데이터의 normalization을 위한 통계 방법으로 R 통계 도구와 linear 모델을 사용하여 microarray 칩의 유전자 발현 양상을 분석한다. 통계적 방법을 사용하지 않은 데이터를 추출, 이 데이터의 패턴 그래프 그리고 발현 레벨을 분류하여 마이크로어레이의 각 스팟의 유효성 검토의 정확성을 높였다. 이 시스템은 칩의 유효성 검토, 스팟의 유효성 검토, 유전자 선정에 대해 분석의 용이성과 정확성을 높일 수 있었다.

  • PDF

A Named Entity Recognition Platform Based on Semi-Automatically Built NE-annotated Corpora and KoBERT (반자동구축된 개체명 주석코퍼스 DecoNAC과 KoBERT를 이용한 개체명인식 플랫폼 DecoNERO)

  • Kim, Shin-Woo;Hwang, Chang-Hoe;Yoon, Jeong-Woo;Lee, Seong-Hyeon;Choi, Soo-Won;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.304-309
    • /
    • 2020
  • 본 연구에서는 한국어 전자사전 DECO(Dictionnaire Electronique du COreen)와 다단어(Multi-Word Expressions: MWE) 개체명을 부분 패턴으로 기술하는 부분문법그래프(Local-Grammar Graph: LGG) 프레임에 기반하여 반자동으로 개체명주석 코퍼스 DecoNAC을 구축한 후, 이를 개체명 분석에 활용하고 또한 기계학습에 필요한 도메인별 학습 데이터로 활용하는 DecoNERO 개체명인식 플랫폼을 소개하는 데에 목적을 두었다. 최근 들어 좋은 성과를 보이는 것으로 보고되고 있는 기계학습 방법론들은 다양한 도메인을 기반으로한 대규모의 학습데이터를 필요로 한다. 본 연구에서는 정교하게 설계된 개체명 사전과 다단어 개체명 시퀀스에 대한 언어자원을 바탕으로 하는 반자동으로 학습데이터를 생성하는 방법론을 제안하였다. 본 연구에서 제안된 개체명주석 코퍼스 DecoNAC 기반 접근법의 성능을 실험하기 위해 온라인 뉴스 기사 텍스트를 바탕으로 실험을 진행하였다. 이 실험에서 DecoNAC을 적용한 경우, KoBERT 모델만으로 개체명을 인식한 결과에 비해 약 7.49%의 성능향상을 기대할 수 있음을 확인하였다.

  • PDF

Building Sentiment-Annotated Datasets for Training a FbSA model based on the SSP methodology (반자동 언어데이터 증강 방식에 기반한 FbSA 모델 학습을 위한 감성주석 데이터셋 FeSAD 구축)

  • Yoon, Jeong-Woo;Hwang, Chang-Hoe;Choi, Su-Won;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.66-71
    • /
    • 2021
  • 본 연구는 한국어 자질 기반 감성분석(Feature-based Sentiment Analysis: FbSA)을 위한 대규모의 학습데이터 구축에 있어 반자동 언어데이터 증강 기법(SSP: Semi-automatic Symbolic Propagation)에 입각한 자질-감성 주석 데이터셋 FeSAD(Feature-Sentiment-Annotated Dataset)의 개발 과정과 성능 평가를 소개하는 것을 목표로 한다. FeSAD는 언어자원을 활용한 SSP 1단계 주석 이후, 작업자의 주석이 2단계에서 이루어지는 2-STEP 주석 과정을 통해 구축된다. SSP 주석을 위한 언어자원에는 부분 문법 그래프(Local Grammar Graph: LGG) 스키마와 한국어 기계가독형 전자사전 DECO(Dictionnaire Electronique du COréen)가 활용되며, 본 연구에서는 7개의 도메인(코스메틱, IT제품, 패션/의류, 푸드/배달음식, 가구/인테리어, 핀테크앱, KPOP)에 대해, 오피니언 트리플이 주석된 FeSAD 데이터셋을 구축하는 프로세싱을 소개하였다. 코스메틱(COS)과 푸드/배달음식(FOO) 두 도메인에 대해, 언어자원을 활용한 1단계 SSP 주석 성능을 평가한 결과, 각각 F1-score 0.93과 0.90의 성능을 보였으며, 이를 통해 FbSA용 학습데이터 주석을 위한 작업자의 작업이 기존 작업의 10% 이하의 비중으로 감소함으로써, 학습데이터 구축을 위한 프로세싱의 소요시간과 품질이 획기적으로 개선될 수 있음을 확인하였다.

  • PDF

Exploration of Types and Context of Errors in the Weather Data Analysis Process (기상 데이터 분석 과정에서 나타나는 오류의 유형과 맥락 탐색)

  • Seok-Young Hong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.2
    • /
    • pp.153-167
    • /
    • 2024
  • This study explored the errors and context occurred during high school students' data analysis processes. For the study, 222 data inquiry reports produced by 74 students from 'A' High School were collected and explored the detailed error types in the data analysis processes such as data collection and preprocessing, data representation, and data interpretation. The results of study found that in the data interpretation process, students had a somewhat insufficient understanding of seasonal variations and periodic patterns about weather elements. And, various types of errors were identified in the data representation process, such as basic unit in graphs, legend settings, trend lines. The causes of these errors are the feature of authoring tools, misconceptions related to weather elements, and cognitive biases, etc. Based on the study's results, educational implications for big data education, a significant topic in future science education, were derived. And related follow-up studies were suggested.

Review of the Development and Application of Disease Network (보건행정 연구자를 위한 질병 네트워크의 구축과 응용 고찰)

  • Kyungmin Lee;Ji-Woong Nam;Yewon Jung;Tae Sic Lee;Ki-Bong Yoo
    • Health Policy and Management
    • /
    • v.34 no.3
    • /
    • pp.226-237
    • /
    • 2024
  • This paper reviewed on understanding the disease network model which represents the relationships, such as risks, pathways, and progression trajectories, among various diseases. By utilizing the disease network models, it visualized the trajectories paths of diseases over time and captured potential relationships between diseases that were previously undiscovered, thereby providing novel insights. This study introduced research cases of disease networks using various domestic and international healthcare data based on graph theory and network models, reviewed the methodologies and applications for constructing disease networks, and suggested the potential for their application in health insurance big data. The paper also discussed the limitations of disease network research and proposed future research directions.

Ozone Concentration Measurement and Atmospheric Scale Height Analysis Using Helium Balloon in the Troposphere and the Lower Stratosphere Over the Southern Korean Peninsula (헬륨풍선을 이용한 대기 중 오존 밀도 측정 및 대기 높이 척도 분석: 한반도 남부 지역의 대류권 및 성층권 하부)

  • Seungwoo Yoo;Min Jun Kim;Byeong-Hyeon Han;Eojin Kim;Ki-nam Kim;Jong-Kyun Chung
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.220-231
    • /
    • 2024
  • This study deals with an experiment to measure ozone concentration in the atmosphere over the Korean Peninsula, Jeollabuk-do, using a helium balloon and analyze the change in atmospheric density based on the scale height. In the experiment, Arduino Uno was used to collect data and ozone concentration was measured using the MQ131 sensor. In addition, the BMP280 sensor was used to measure temperature and atmospheric pressure at various altitudes. The experimental results showed that the scale height of the atmosphere over the Korean Peninsula was 6,828.30 m, and the decreasing pattern of atmospheric density was confirmed based on this. In addition, by analyzing the graph of the measured ozone level, a phenomenon of a rapid decrease in the ozone level was observed between 8 km and 9 km altitude. These results can provide important information for understanding the atmospheric environment and ozone concentration changes and for environmental monitoring.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.