• 제목/요약/키워드: 패턴 교통정보

Search Result 238, Processing Time 0.03 seconds

Implementation of traffic prediction system based on queuing network model (큐잉 네트워크 모델 기반의 교통량 예측 시스템 설계 및 구현)

  • Park, Jong-Chang;Kim, Kyun-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.395-396
    • /
    • 2014
  • 최근 급증하는 교통 혼잡으로 인해 시간적/물리적 손실이 크게 발생하고 있다. 이러한 교통난 해소는 시설투자만으로는 근본적인 해결책이 될 수 없다는 판단 하에 지난 수년간 보다 정확한 교통량을 예측하기 위해 다양한 교통량 예측 모델들이 개발되어왔다. 그러나 기존 모델들은 회기분석을 통해 과거 교통량을 분석하고 과거의 교통패턴이 미래에 지속적으로 연장된다는 가정 하에 연구되었기 때문에 실시간으로 급변하는 불규칙한 교통 패턴에 대한 예측의 신뢰성을 떨어트린다. 이를 위해 본 논문에서는 큐잉 네트워크 모델 기반의 교통량 예측 모델을 설계 하고 이를 바탕으로 안드로이드 기반의 애플리케이션을 구현하였다.

  • PDF

Real-Time Traffic Information Provision Using Individual Probe and Five-Minute Aggregated Data (개별차량 및 5분 집계 프로브 자료를 이용한 실시간 교통정보 제공)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.56-73
    • /
    • 2019
  • Probe-based systems have been gaining popularity in advanced traveler information systems. However, the high possibility of providing inaccurate travel-time information due to the inherent time-lag phenomenon is still an important issue to be resolved. To mitigate the time-lag problem, different prediction techniques have been applied, but the techniques are generally regarded as less effective for travel times with high variability. For this reason, current 5-min aggregated data have been commonly used for real-time travel-time provision on highways with high travel-time fluctuation. However, the 5-min aggregation interval itself can further increase the time-lags in the real-time travel-time information equivalent to 5 minutes. In this study, a new scheme that uses both individual probe and 5-min aggregated travel times is suggested to provide reliable real-time travel-time information. The scheme utilizes individual probe data under congested conditions and 5-min aggregated data under uncongested conditions, respectively. As a result of an evaluation with field data, the proposed scheme showed the best performance, with a maximum reduction in travel-time error of 18%.

An Automatic Pattern Recognition Algorithm for Identifying the Spatio-temporal Congestion Evolution Patterns in Freeway Historic Data (고속도로 이력데이터에 포함된 정체 시공간 전개 패턴 자동인식 알고리즘 개발)

  • Park, Eun Mi;Oh, Hyun Sun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.522-530
    • /
    • 2014
  • Spatio-temporal congestion evolution pattern can be reproduced using the VDS(Vehicle Detection System) historic speed dataset in the TMC(Traffic Management Center)s. Such dataset provides a pool of spatio-temporally experienced traffic conditions. Traffic flow pattern is known as spatio-temporally recurred, and even non-recurrent congestion caused by incidents has patterns according to the incident conditions. These imply that the information should be useful for traffic prediction and traffic management. Traffic flow predictions are generally performed using black-box approaches such as neural network, genetic algorithm, and etc. Black-box approaches are not designed to provide an explanation of their modeling and reasoning process and not to estimate the benefits and the risks of the implementation of such a solution. TMCs are reluctant to employ the black-box approaches even though there are numerous valuable articles. This research proposes a more readily understandable and intuitively appealing data-driven approach and developes an algorithm for identifying congestion patterns for recurrent and non-recurrent congestion management and information provision.

Development of Traffic Accident Recording and Reporting System by Image Processing (영상기반 교통사고 자동기록장치 개발)

  • Ki Yong-Kul;Kim Jin-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • 본 연구에서 영상 패턴인식 기술을 이용하여 교차로에서 발생하는 교통사고의 전과정을 동영상으로 기록하고 취득된 사고 자료를 교통관리센터에 전송하여 필요한 조치를 바로 취할 수 있도록 하는 시스템을 제시하였다. 제안된 기술에 따라 개발된 교통사고 자동기록장치가 서울시 교통사고 다발 교차로에 설치되어 운영 및 성능평가 중이다. 동 장치에서 수집된 교통사고 동영상 자료는 교통사고 조사신뢰도를 높이고 교통안전 개선에 크게 기여할 것이다.

  • PDF

A new approach to estimate the link travel time by using AVL technology (AVL을 이용한 구간통행시간 산출기법 개발)

  • 김성인;이영호;남기효
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.91-103
    • /
    • 1999
  • 이 연구는 자동 차량위치 측정기법(Automatic Vehicle Location, AVL)을 이용해서 수집한 교통상황자료를 가지고 구간 통행시간을 산출하는 알고리즘을 개발한다. AVL기법을 이용하는 경우, 처리해야 할 자료량이 많아서 실시간에 정보를 산출하는 것이 힘들다. 따라서 이 연구는 처리해야 할 자료량을 가능한 한 줄이고 자료량이 적은 경우에도 효율적인 구간통행시간을 산출하는 알고리즘을 제시한다. 이 연구의 방법론은 크게 4가지인데, 첫째, 해석 기법, 둘째, 회귀분석, 셋째, 인공지능 및 전문가 시스템, 넷째, 통계분석이다. 이 방법론을 이용해서 세 단계 알고리즘을 개발하는데, 첫째는 실시간 분석통계 알고리즘, 둘째는 과거자료분석 알고리즘, 셋째는 자료응합 알고리즘이다. 이 알고리즘 가운데 자료융합 알고리즘 결과가 산출하고자 하는 구간 통행시간이다. 실시간 분석통계 알고리즘은 연속하는 세 개 구간의 통행 패턴을 이용해서 가운데 구간의 통행시간을 산출하는 방법을 제시한다. 또 실시간 분석통계 알고리즘으로 산출하지 못한 구간은 인접구간 상관도 정보를 이용해서 구간통행시간을 추정한다. 과거자료분석 알고리즘은 회귀분석을 이용해서 시간대별 통행시간 평균과 분산을 구하고, 이 결과를 바탕으로 인접구간 상관도 정보를 오프라인으로 구하는 알고리즘이다. 자료융합 알고리즘은 2가지 단계를 거치는데, 그것은 실시간 자료융합과 최종 자료융합이다. 실시간 자료융합은 실시간에 가까운 자료원의 실시간 분석통계 알고리즘 결과 패턴과 인접구간 상관도 정보를 이용한 구간통행시간 추정 결과를 이용해서 패턴에 따라 다른 방법으로 융합을 하는 알고리즘을 개발한다. 최종 자료융합은 실시간 자료융합 결과와 회귀분석 결과의 패턴을 이용해서 구간 통행시간을 산출한다. 이 연구를 기존 연구와 비교할 때, 세 가지 독차성이 있다. 첫째는 연속하는 세 구간 통행 패턴을 분석하였기 때문에 기존의 노드의존 방식을 탈피하였다는 점이다. 따라서 자료량이 적은 경우도 믿을만한 통행시간을 산출할 수 있다는 것이다. 둘째는 인접구간 상관도 정보를 구간통행시간 산출에 이용하였기 때문에 자료를 효율적으로 이용할 수 있다는 점이다. 셋째는 자료원 패턴을 분류하고 전문가 시스템을 이용하여 자료융합 하였기 때문에 수행속도가 빠르고, 신뢰성있는 정보를 제공한다는 점이다. 이 연구는 개발한 알고리즘 정확도를 검증하기 위해서 두 가지 검증방법을 이용하였다. 첫째는 시뮬레이션을 이용한 것이고, 둘째는 실제 주행조사 분석을 이용한 것이다. 두 가지 검증 결과는 알고리즘 정확도를 보여준다.

  • PDF

Traffic Sign Recognition Using Color Information and Neural Network with Multi-layer Perceptron (컬러정보와 다층퍼셉트론 신경망을 이용한 교통표지판 인식)

  • Bang, Gul-Won;Kang, Dea-Yook;Kim, Byung-Ki;Cho, Wan-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.305-308
    • /
    • 2007
  • 본 논문은 교통표지판을 자동으로 인식하는 방법에 관한 연구로 기존의 교통표지판 인식시스템에서는 인식하는데 걸리는 시간이 길고 잡음환경에서 인식률이 저하되며 변경된 교통표지판은 인식하지 못하는 문제점이 있다. 본 논문에서는 이와 같은 문제점을 해결하기위해 컬러정보를 이용하여 교통표지판 영역을 추출하고 추출된 이미지를 인식하는데 다층퍼셉트론 신경망 알고리즘을 적용하여 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판 영역을 추출한다. 영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 군집화한다. 교통표지판 인식은 학습이 가능한 다층퍼셉트론의 오류역전파알고리즘을 적용하여 인식한다. 다층퍼셉트론 신경망 알고리즘은 패턴인식 분야에서 우수한 성능이 입증 되었다.

Daily Travel Pattern using Public Transport Mode in Seoul:An Analysis of a Multi-Dimensional Motif Search (핵심정보배열 추출에 의한 서울시 대중교통 통행패턴 분석)

  • Joh, Chang-Hyeon
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.2
    • /
    • pp.176-186
    • /
    • 2009
  • Transportation policy to facilitate the public mode use is of the foremost importance to the local governments of Metropolitan Seoul, regarding the economic and environmental consequences of the increasing use of car. Understanding the travel behaviour is essential to the establishment of proper policy to guide more people to the use of public modes instead of private. The paper reports a result of sequential analysis of individual travel behaviour in Metropolitan Seoul, using a multi-dimensional motif search technique applied to Smart Card data that integrates individuals' different public mode uses. Groups of travel patterns with similar sequential information identified distinctive travel behaviour between Seoul north and south and between metro and bus uses. Travel patterns are more bounded within north Seoul and south Seoul respectively than crossing Han River between north and south. Within north and south, travel patterns visiting northern CBD and southern CBD, respectively, as well as their local neighbour in north and south, often use metro and metro-local bus combination, while travel patterns visiting only the north and south locals without CBDs more use only the local bus line and even only the areal bus line.

Driving Anomaly Pattern Detection System Based on Vehicle Internal Diagnostic Data Analysis (차량 내부 진단 데이터 분석 기반의 주행 이상 패턴 감지 시스템)

  • Tae-jeong Park;Ji-ho Park;Bo-yoon Seo;Jun-ha Shin;Kyung-hwan Choi;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.299-300
    • /
    • 2024
  • 첨단 기술의 발전과 함께 지능형 운전자 보조 시스템의 성능 및 교통 시스템 체계가 고도화됨에 따라 전반적인 교통사고 발생 건수는 줄어드는 추세지만 대한민국의 교통사고 발생 빈도는 아직 OECD 평균 대비 높은 실정이다. 특히, 2020년 경제 협력 개발 기구(OECD) 통계에 따르면 대한민국의 인구 10만 명당 교통사고 사망자 수는 회원국 36개 중 29위로 매우 높은 축에 속한다. 따라서, 본 논문에서는 교통사고 발생률을 낮추는 데 도움을 줄 수 있는 주행 이상 패턴 감지 시스템을 제안한다. 제안한 방법에서는 실시간 영상 분석을 통해 신호등 및 차선을 인식함과 동시 차량 내부 진단 데이터에 대한 시계열 분석을 기반으로 운전자의 운전 패턴을 분석한 후 평소와 다른 이상 징후를 발견하면 운전자에게 경고 알림을 제공하여 위험한 상황을 회피할 수 있도록 지원한다.

  • PDF

One-Class Classification based on Recorded Mouse Activity for Detecting Abnormal Game Users (마우스 동작 기록 기반 비정상 게임 이용자 감지를 위한 단일 클래스 분류 기법)

  • Minjun Song;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.39-42
    • /
    • 2023
  • 최근 온라인 게임 산업이 급속도로 확장됨과 더불어 Gamebot과 같은 비정상적인 프로그램으로 인한 게임 서비스 피해사례가 급격하게 증가하고 있다. 특히, 대표적인 게임 장르 중 하나인 FPS(First-Person Shooter)에서 Aimbot의 사용은 정상적인 이용자들에게 재미 요소를 잃어버리게 하고 상대적 박탈감을 일으켜 게임의 수명을 줄이는 원인이 된다. 비정상 게임 이용자의 근절을 위해서 메모리 변조 및 불법 변조 프로그램 접근 차단 기법과 불법 프로그램 사용의 패턴 모니터링과 같은 기법들이 제안되었지만, 우회 프로그램 및 새로운 패턴을 이용한 비정상적인 프로그램의 개발에는 취약하다는 단점이 있다. 따라서, 본 논문에서는 정상적인 게임 이용자의 패턴만 학습함으로써 비정상 이용자 검출을 가능하게 하는 딥러닝 기반 단일 클래스 분류 기법을 제안하며, 가장 빈번하게 발생하는 치트(Cheat) 유형인 FPS 게임 내 Aimbot 사용 감지에 초점을 두었다. 제안된 비정상 게임 이용자 감지 시스템은 정상적인 사용자의 마우스 좌표를 데카르트 좌표계(Cartesian coordinates)와 극좌표계(Polar coordinates)의 형태로 패턴을 추출하는 과정과 정상적인 마우스 동작 기록으로 부터 학습된 LSTM 기반 Autoencoder의 복원 에러에 따른 검출 과정으로 구성된다. 실험에서 제안된 모델은 FPS 게임 내 마우스 동작을 기록한 공개 데이터셋인 CSGO 게임 데이터셋으로 부터 학습되었으며, 학습된 모델의 테스트 결과는 데카르트 좌표계로부터 훈련된 제안 모델이 비정상 게임 이용자를 분류하는데 적합함을 입증하였다.

  • PDF

Development of a Mid-/Long-term Prediction Algorithm for Traffic Speed Under Foggy Weather Conditions (안개시 도시고속도로 통행속도 중장기 예측 알고리즘 개발)

  • JEONG, Eunbi;OH, Cheol;KIM, Youngho
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The intelligent transportation systems allow us to have valuable opportunities for collecting wide-area coverage traffic data. The significant efforts have been made in many countries to provide the reliable traffic conditions information such as travel time. This study analyzes the impacts of the fog weather conditions on the traffic stream. Also, a strategy for predicting the long-term traffic speeds is developed under foggy weather conditions. The results show that the average of speed reductions are 2.92kph and 5.36kph under the slight and heavy fog respectively. The best prediction performance is achieved when the previous 45 pattern cases data is used, and the 14.11% of mean absolute percentage error(MAPE) is obtained. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.