본 논문에서는 유연 패턴(elastic pattern)을 갖는 규칙(rule)을 탐사하고 매칭하는 기법에 대해 논의한다. 유연 패턴은 시간 축으로 확장 및 수축할 수 있는 요소들의 순서화된 리스트이다. 유연 패턴은 서로 다른 샘플링 비율을 갖는 데이터 시퀀스들로부터 규칙들을 찾아내는데 유용하게 사용된다. 본 연구에서는 헤드(head: 규칙의 왼쪽 부분)와 바디(body: 규칙의 오른쪽 부분)가 모두 유연 패턴으로 구성된 규칙들을 신속하게 찾도록 하기 위하여 데이터 시퀀스로부터 서픽스 트리(suffix tree)를 구성한다. 이 서픽스 트리는 유연 규칙들의 압축된 표현이며, 타깃 헤드 시퀀스와 매치되는 규칙을 찾기 위한 인덱스 구조로서 사용된다. 만일, 매치되는 규칙을 찾을 수 없는 경우에는 규칙 완화(rule relaxation)의 개념을 이용한다. 클러스터 계층(cluster hierarchy)과 완화 오차(relaxation error)를 사용하여 타깃 헤드 시퀀스의 고유한 정보를 대부분 포함하고 있는 최소한으로 완화된 규칙을 찾는다. 다양한 실험을 통한 성능 평가를 통하여 제안한 기법의 우수성을 검증한다.
본 연구에서는 FMM 신경망을 이용한 패턴 분류 문제에서 학습 패턴에 포함되는 특징의 발생 빈도와 특징 값의 분포를 고려하는 네트워크 구조와 학습 방법론을 소개한다. 이를 위하여 하이퍼박스 소속함수의 산출 과정에 세부특징에 대한 가중치 개념이 적용되는 새로운 활성화 특성을 제안한다. 또한 하이퍼박스의 특징 범위와 빈도 및 특징 값의 분포를 유지하고 새롭게 정의된 하이퍼박스 생성, 확장, 축소기법을 적용한다 이는 가중치 개념을 통하여 각 특징별 중요도를 서로 다른 값으로 반영할 수 있게 하며, 특징의 분포 정보가 고려되어 기존 FMM 모델에 비하여 노이즈에 의한 영향을 개선하여 학습 효과를 증진시킬 뿐만 아니라 하이퍼박스의 생성 및 확장 과정 중에 학습패턴의 순서에 상관없이 동일한 특성을 보일 수 있게 한다.
가상공간에는 PC(Playerable Character), NPC(Non-Playerable Character)등의 동적 객체와 건물, 지형 등의 정적 객체들이 존재하게 된다. 동적 객체들의 경우, 현실감을 위해 인공지능이 자주 이용된다 현재까지 인공지능에 대한 연구는 유한상태기계(Finite State Machine. FSM). 학습 알고리즘, 유전자 알고리즘, 신경망 알고리즘 등을 중심으로 진행되어 왔다. 이중 유한상태기계는 비교적 알고리즘이 간단하고, 시스템의 부담이 적어 간단한 객체의 인공지능으로 가장 널리 사용되고 있다. 본 논문은 유찬상태기계를 확장하여 모드변경(Mode Change)과 그룹행동을 보여줄 수 있는 XML을 활용한 FSM 시스템을 제안한다. 여기서 모드변경이란 하나의 행동 패턴에서 다른 행동 패턴으로 변경하는 것을, 그룹행동은 여러 객체가 함께 행동하는 Flocking기법을 지칭한파. 이러한 XML을 활용한 FSM 시스템은 다양한 패턴의 정의는 물론, 객체의 상태 정의 및 수정, 확장이 용이하여, 다양한 응용 분야에서 활용될 수 있다.
일반적으로, 기존의 소프트웨어에 대한 확장 또는 재구성 등의 요구변화에 의해 소프트웨어는 진화한다. 설계패턴은 객체지향 소프트웨어를 확장하기 위한 적합한 방법들을 표현한 것으로서, 소프트웨어 설계에 있어서 목표치에 가장 이상적인 상태를 제공하고 있다. 본 논문에서는 주어진 소프트웨어에 대하여 일련의 기본적인 프로그램 변환조작들을 적용하여 목표상태로 재구성하여 진화시키기위한 몇가지 설계패턴 변환기법들을 제안한다. 기존의 객체지향 어플리케이션의 재구성 및 진화를 위하여, 설계자가 클래스 다이어그램에 적용할 수 있는 자동화도구의 개발에 본 논문의 연구결과를 이용할 수 있다.
공간디자인의 확장을 통한 영상디자인에 감각적이고 생명력을 부여하여 시각적이고 기술적 요소를 가미한 유기적 아름다움과 감성의 경계와 확장에 대한 영상으로 접근하고 서로 다른 환경에서의 구조적이며, 공간적, 그리고 시간적인 개념들이 쌓이면서 다양한 오브제들에 환경에 맞는 의미들을 부여하고, 실험적 영상을 스크린뿐만 아니라 다양한 매체들을 통해서 효과적인 정보전달체계와 메시지를 전달하여 새로운 감각을 확장한다. 도시경관이나 공원, 건축물등 다양한 공공환경을 개선하기 위한 효과적인 영상연출과 가상공간에서의 현실적 느낌들을 부여하고 니즈들의 상호관계를 극복하여 전시기법과 패턴 여러 복합적인 요소들을 활용하여 영상디자인에 있어서의 효과적인 방법들을 여러사례 분석과 실험들을 통하여 연구한다.
관점지향 프로그래밍은 횡단관심사를 애스펙트로 모듈화 하여 시스템의 개발 용이성, 재사용성 그리고 확장성을 향상시킨다. 이에 관점지향 프로그래밍 적용을 위한 다양한 연구가 진행되고 있으나 애스펙트를 효율적으로 개발하는 기법 관련 연구가 보다 필요한 상황이다. 본 논문에서는 애스펙트의 교차점을 구성하는 핵심요소인 결합식 추출을 위한 기법을 제안한다. 제안한 기법은 결합정보 매트릭스 작성, 결합식 작성, 그리고 결합식 정제 및 확인으로 구성한 워크플로우를 수행하여 결합정보 매트릭스와 패키지 트리를 작성하고, 결합점명 패턴의 공통성을 분석하여 애스펙트 교차점의 결합식을 추출한다. 추출한 결합식은 결합점의 패키지명, 클래스명, 그리고 메소드명 패턴의 공통성을 반영하며, 기법의 산출물은 애스펙트 결합에 대한 정확한 정보를 제공한다.
생물학적 서열 데이터는 크게 DNA 염기 서열과 단백질 아미노산 서열이 있다. 이들 서열은 일반적으로 많은 수의 항목들을 가지고 있어 그 길이가 매우 길다. 생물학적 데이터 서열들에는 보통 빈번하게 발생하는 부분 연속 서열들이 존재하는데 이들 서열들을 찾아내는 것은 다양한 서열 분석에서 유용하게 사용될 수 있다. 이를 위해 초기에는 Apriori 알고리즘을 기반으로 하는 순차패턴 마이닝 알고리즘들을 활용하는 방법들이 많이 제시되었다. 그중 PrefixSpan 알고리즘은 Apriori기반의 가장 효율적인 순차패턴 마이닝 기법이다. 하지만 이 알고리즘은 길이-1인 빈발 패턴들로부터 서열 패턴을 확장해나가는 방식으로 길이가 긴 연속 서열을 포함하는 생물학적 데이터 서열들에 대한 검색방법으로는 적합하지 않다. 최근에는 기존의 PrefixSpan방식을 이용하면서도 반복적인 처리과정을 줄인 MacosVSpan이 제안되었다. 하지만 이 알고리즘 또한 원본 데이터베이스보다 크기가 큰 별도의 프로젝션 데이터베이스를 사용함으로서 많은 비용부담이 발생하고 특히 길이가 긴 서열에 대해서는 더욱 효율적이지 못하다. 이에 본 논문에서 많은 양의 생물학적 데이터 서열들로부터 빈번한 연속서열을 고정길이 확장 트리를 이용하여 효과적으로 찾아내는 방법을 제안한다. 그리고 다양한 환경에서 실험을 통해 제안하는 방식이 MacosVSpan알고리즘에 비해 검색 성능이 우수함을 증명한다.
QA(질의응답) 시스템은 질의에서 요구하는 정답 유형 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서 본 논문은 질의에서 사용된 의미적으로 더 가까운 단어들로 구성되는 심층적 질의 카테고리의 질의 패턴을 이용한 질의 확장 방법론을 제안한다. 제안한 방법은 질의 유형에 따른 개념 리스트를 우선 구축하고, 학습 알고리즘에 의해 각 질의 카테고리에 대한 개념 리스트를 구축한다. 실험의 결과로서 제안한 방법의 성능이 향상되었음을 입증하였다.
침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 최근 인터넷의 급속한 발달과 함께 침입의 유형들이 복잡해지고 새로운 침입유형의 발생빈도가 높아져 이에 대한 빠르고 정확한 대응이 필요하다. 따라서 이 논문에서는 침입탐지 시스템의 이러한 문제점을 해결하기 위한 한 방안으로 지능적이고 자동화된 탐지를 지원하기 위한 경보데이터 순차 패턴 마이닝 기법을 제안한다. 제안된 순차 패턴 마이닝 기법은 기존의 마이닝 기법 중 prefixSpan 알고리즘을 경보데이터의 특성에 맞게 확장 설계하였다. 이 확장 설계된 순차패턴 마이너는 보안정책 실행시스템의 경보데이터 분석기의 일부분으로 구성된다. 구현된 순차패턴 마이너는 탐사된 패턴 내에서 적용 가능한 침입패턴들을 찾아내어 효율적으로 침입을 탐지하여 보안정책 실행 시스템에서 이를 기반으로 새로운 보안규칙을 생성하고 침입에 대응할 수 있다. 제안된 경보데이터 순차 패턴 마이너를 이용하여 침입의 시퀀스의 행동을 예측하거나 기술하는 규칙들을 생성하므로 침입을 효율적으로 예측하고 대응할 수 있다.
본 논문에서는 FMM 신경망의 활성화 특성에 가중치 개념을 도입한 패턴 분류 모형을 소개하고 이에 대한 학습 기법을 제안한다. 또한 제안된 모델의 활용으로서 주어진 학습패턴에 대하여 효과적인 특징의 종류와 특징과 패턴 클래스간의 상대적 연관도를 분석하는 방법론을 제시한다. 이를 위하여 새롭게 정의된 하이퍼박스 생성, 확장, 축소의 방법론을 소개하며, 이들 이론에 대하여 의료진단 데이터 등을 사용한 실제 실험을 통하여 유용성을 고찰한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.