• Title/Summary/Keyword: 패턴자료

Search Result 2,009, Processing Time 0.034 seconds

Geovisualization Environment for Spatio-temporal Trajectory of Personal Activity (시공간 개인통행자료의 지리적 시각화)

  • Ahn Jae-Seong;Lee Yang-Won;Park Key-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.310-320
    • /
    • 2005
  • This study attempts at prototyping and evaluating a geovisualization tool that summarizes and explores human activity patterns using spatio-temporal trajectory data collected from GPS receiver. A set of core conceptualization developed in 'time geography' is successfully represented by our prototype based on the notion of 'space-time cube.' The notions of 'temporal dispersion cylinder' and 'parallel plane plot' are also implemented to allow funker analyses of human activity pattern on the space-time trajectory. The capabilities of the geovisualization environment we proposed include the interactive and dynamic functions that support a variety of explorations on the three components of spatio-temporal data : space(where), time(when), and object(what).

Fluvial mixing characteristics in large scale confluence between Nam and Nakdong River (남강-낙동강 합류부 대하천 규모 수리학적 혼합특성 연구)

  • Choi, Suin;Kim, Dongsu;Son, Geunsoo;Kim, Youngdo;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.264-264
    • /
    • 2022
  • 하천의 합류부는 두 개 이상의 하천이 하나로 합쳐지는 구간으로 서로 다른 특성으로 인해 급격한 흐름의 변화와 수리학적 지형변화가 발생하는 구간이다. 하천의 합류부에서는 유체의 물리화학적인 특성과 흐름 구조의 변화가 발생할 수 있다. 흐름 구조의 변화로 인한 유사 이송으로 세굴과 같은 지형적인 변화가 발생할 수 있다. 합류부의 혼합을 이해하기 위해서는 본류와 지류의 다양한 유입조건에 따른 공간적인 패턴을 분석하는 것이 중요하다. 그러나, 대부분의 합류부 연구들은 실측에 기반한 공간적인 패턴 분석의 어려움으로 인해 실내실험 또는 수치모형에 의존하여 연구가 수행되어, 실측자료에 기반한 공간적인 수체혼합의 분석은 매우 제한적이었다. 따라서, 본 연구에서는 하천 합류부의 혼합 현상을 규명하는 인자로 흐름 방향 유속, 2차류와 수심 등 기본적인 수리학적 인자들 외에 연직, 수평 방향으로 측정한 수질 자료와 드론 영상을 활용하여 합류부의 혼합 특성을 해석하고자 하였다. 수질 자료 중 하천의 혼합을 가장 잘 확인할 수 있는 인자로써 전기전도도와 온도를 활용하였다. SonTek ADCP를 이동식으로 횡단하여 측정해 흐름 방향 유속과 2차류, 수심을 확인하였다. ADCP를 운용함과 동시에 YSI의 수질센서를 활용하여 연직, 수평 방향으로의 전기전도도와 온도의 분포를 확인하였다. 또한, 합류부의 2차원 공간적인 분포를 확인하기 위해 드론 영상을 촬영하였다. ADCP, YSI, 드론의 계측자료는 한국의 낙동강과 남강 합류부에서 측정되었고, 분석 결과 계측장비 간의 경향성이 일치하였다. 또한, 이전에 진행된 해외의 합류부 연구 결과와 유사한 결과가 관측되었으나, 일부 부분에서는 다른 결과를 보였다.

  • PDF

Development of the Radar Precipitation Bais Correction and Precipitation Ensemble Generation Technique (레이더 강수자료 편의보정 및 강수앙상블 생산기법 개발)

  • Kim, Tae-Jeong;Kwon, Jang-Gyeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.17-17
    • /
    • 2017
  • 최근 기후변화로 인한 국지적인 돌발성 위험기상 및 집중호우의 발생빈도가 증가로 인한 기상재해의 규모가 대형화되고 있다. 이러한 기상재해 및 위험기상의 대비를 위하여 시공간적으로 고해상도를 갖는 레이더 강수자료가 수공학분야에 널리 활용되고 있다. 하지만 기상레이더는 대기 중에 존재하는 수상체로부터 반사되는 반사도를 사용하여 강수량을 산정하므로 지상 강수자료와 시공간적 오차가 존재하며 레이더-반사도 관계식을 적용하더라도 과소추정의 문제가 발생하게 된다. 과소추정의 문제를 해결하기 위하여 편의보정기법을 적용한 레이더 강수자료에는 여전히 관측과정에서 발생할 수 있는 무작위 오차(random error)에 대한 불확실성이 존재하게 된다. 따라서 본 연구에서는 과소추정의 문제를 개선하고 레이더 강수자료의 시공간적 오차구조 규명이 가능한 정량적 강수량 추정기법을 개발하였다. 이를 위해 다변량 분석기법을 사용하여 레이더 강수자료의 시공간적 오차구조를 반영할 수 있는 무작위 오차(random error)를 확률론적으로 발생할 수 있는 레이더 강수앙상블 모형을 개발하였다. 개발된 모형으로부터 생산된 레이더 강우앙상블은 통계적 효율기준 분석결과 우수한 모형성능을 확인하였으며 극치호우 및 강우시계열 패턴 분석결과 지상강우의 특성을 효과적으로 재현하는 것을 확인하였다. 최종적으로 도시유역 및 미계측유역의 강우-유출모형에 입력 자료로 활용하여 홍수자료를 생산할 수 있는 레이더기반 홍수예보 시스템을 개발하고자 한다.

  • PDF

Application and Accuracy Improvement of Numerical Weather Prediction Data for Rainfall and Flood Forecasting (강우 및 홍수 예측을 위한 수치예보자료의 적용 및 정확도 개선)

  • Moon, Hyejin;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.10-10
    • /
    • 2018
  • 기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.

  • PDF

Evaluation of multi-basin integrated learning method of LSTM for hydrological time series prediction (수문 시계열 예측을 위한 LSTM의 다지점 통합 학습 방안 평가)

  • Choi, Jeonghyeon;Won, Jeongeun;Jung, Haeun;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.366-366
    • /
    • 2022
  • 유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.

  • PDF

The Surface Temperature Environment Analysis after Cheonggye Stream Reconstruction using RS/GIS (RS/GIS를 이용한 청계천 복원에 따른 지표 열 환경 분석)

  • Jo, Myung-Hee;Kim, Sung-Jae;Jo, Youn-Won;Kim, Yeon-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.320-325
    • /
    • 2007
  • 인간의 보다 질 높은 생활관을 추구하기 위하여 친 환경적인 산업개발 및 환경 복원 사업에 대한 노력이 최근 들어 끊임없이 지속되고 있다. 본 연구에서는 서울시 청계천을 대상으로 청계천 복원 전과 복원후의 지표 열 분포도를 작성하고 이를 기반으로 청계천 복원 전${\cdot}$후의 지표 열 변화를 분석하였다. 아울러 지표온도와 현지 관측 자료인 AWS 자료와의 비교 분석을 수행하여 지표온도와 대기온도 차를 도출하였다. ASTER 영상 열적외센서(TIR) 와 GIS 를 활용하여 도시 지표면의 온도를 추출하고, AWS 기 상관측자료와의 상관성 분석 함으로써 도심의 지역적 인 지표 열 패턴과 국지적인 기후연구에 활용가능성을 제시하고자 한다.

  • PDF

Face image classification by SVM

  • Park, Hye-Jeong;Sim, Ju-Yong;Kim, Mun-Tae;O, Gwang-Sik;Kim, Dae-Hak
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.155-159
    • /
    • 2003
  • 최근 들어 SVM(support vector machines)은 기계학습의 분야에서 많은 응용이 이루어지고 있으며 특히 분류(classification)나 회귀(regression)분석의 영역에서 많은 연구가 진행중이다. 본 논문에서는 SVM을 이용하여 입력영상자료(image data)를 분류하고자 한다. RGB 컬러 영상자료가 입력되면 이미지 크기에 관계없이 이미지 자체를 입력패턴으로 인식하고 SVM을 통한 훈련(training)을 거친 결과(weight 들과 bias 추정치)를 이용하여 입력영상자료가 사람인가를 분류할 수 있는 문제를 다룬다. 제안된 방법의 타당성은 152개의 영상자료에 적용하여 분석되었다.

  • PDF

Study on Application of Neural Network for Unsupervised Training of Remote Sensing Data (신경망을 이용한 원격탐사자료의 군집화 기법 연구)

  • 김광은;이태섭;채효석
    • Spatial Information Research
    • /
    • v.2 no.2
    • /
    • pp.175-188
    • /
    • 1994
  • A competitive learning network was proposed as unsupervised training method of remote sensing data, Its performance and computational re¬quirements were compared with conventional clustering techniques such as Se¬quential and K - Means. An airborne remote sensing data set was used to study the performance of these classifiers. The proposed algorithm required a little more computational time than the conventional techniques. However, the perform¬ance of competitive learning network algorithm was found to be slightly more than those of Sequential and K - Means clustering techniques.

  • PDF

L밴드 인공위성 SAR센서를 활용한 한반도 주변해의 산출 해상풍 정확도 특성

  • Kim, Tae-Seong;Park, Gyeong-Ae
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.133-133
    • /
    • 2010
  • 인공위성 SAR센서는 기존 산란계 해상풍 자료의 낮은 해상도로 인한 여러 한계를 극복함으로써 다양한 해양연구에 있어 필요성과 활용영역이 넓어지고 있다. 이러한 추세에 따라 전세계적으로 다파장 SAR 센서들이 운용 또는 발사 예정에 있음에도 불구하고 현재까지 한반도 주변해에 대한 SAR 해상풍 산출 연구는 C밴드에만 한정되어왔다. 본 연구에서는 L밴드 해상풍 추출알고리즘을 적용하여 L밴드 SAR 영상으로부터 한반도 주변해의 해상풍을 추출하고 산란계 해상풍 자료와 비교 분석을 통해 정확도 특성을 제시하고자 하였다. 2007년 8월 우리나라 동해 지역을 관측한 L밴드 ALOS PALSAR 영상에 대해 L밴드 HH편광 GMF 알고리즘을 적용하여 해상풍을 산출하였다. 산출 해상풍은 동일시점의 산란계 QuikSCAT 자료와 공간적으로 유사한 패턴을 보였으며 두 자료 간의 풍속오차는 3.45m/s로 나타났다. 연구 해역과 같이 강한 바람 범위에서는 산출 해상풍 간의 차이가 크게 나타나며 풍향으로 인한 오차특성이 보인다. 특히 풍속의 경우, 산란계 해상풍이 중간바람 범위에 집중된 것에 비해 L밴드 SAR 산출 해상풍은 강한 바람 범위까지 포함하는 넓은 풍속값 범위를 나타냈다.

  • PDF

Estimation of Missing Rainfall Data Considering Spatio-Temporal Variation Using Radar Data (레이더 자료를 이용한 시공간적 변동성을 고려한 강우의 결측치 추정)

  • Song, Chang-U;Song, Chang-Joon;Kim, Byeong-Sik;Kim, Soo-Jun;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1196-1200
    • /
    • 2010
  • 본 논문에서는 지점 강우의 결측치를 추정하기 위해 전통적인 통계학적 내삽기법을 이용한 역거리가중치법(IDWM), 역지수가중치법(IEWM), 상관계수가중치법(CCWM)과 패턴 인식의 일종인 인공신경망(ANN)기법 그리고 시공간적 강우분포의 측정이 가능한 레이더 자료를 이용해 결측치를 추정하여 각각의 방법을 비교하였다. 임진강 유역의 15개 지상관측소를 대상으로 교차검정(Cross validation) 분석을 실시해 본 결과, CCWM 방법과 ANN기법에 의한 RMSE가 0.46~1.79의 범위를 보였고, 보정레이더를 이용하여 결측치를 추정한 경우RMSE가 0.05~2.26의 범위를 보여 기존의 전통적 결측치 추정방법보다 실측치에 가까운 결과를 보였다. 이는 레이더자료가 지점 강우자료와는 달리 강우의 시공간적 변동성을 고려한 공간분포의 정보를 지니고 있기 때문인 것으로 판단된다.

  • PDF