• 제목/요약/키워드: 패턴분류기

검색결과 390건 처리시간 0.037초

홍채인식을 위한 강건한 특징추출 방법 (Robust Feature Extract ion Methods for Iris Recognition)

  • 김기진;손병준;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.793-795
    • /
    • 2004
  • 본 논문에서는 웨이블릿 변환과 Direct LDA(DLDA)을 사용한 홍채 특징추출 방법을 제안한다. 이것은 획득한 홍채 영상으로부터 독특한 특징을 추출하기 위해 특별히 이차원 이산 웨이블릿 변환의 다중해상도 분해 방법을 사용하는 것이다 또한 홍채의 다양한 웨이블릿 성분으로부터 변별력을 가진 특징을 얻을 수 있도록 DLDA 기법을 적용하였다. 이러한 특징추출 방법은 이동이나 회전에 변하지 않는 알고리즘을 요구하는 홍채의 모양을 묘사하는데 적합하다. 홍채의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였다. 본 논문에서 인간의 홍채인식을 위해 제시한 방법이 홍채패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.

  • PDF

유방 종양 세포 조직 영상의 분류 (Classification of Breast Tumor Cell Tissue Section Images)

  • 황해길;최현주;윤혜경;남상희;최흥국
    • 융합신호처리학회논문지
    • /
    • 제2권4호
    • /
    • pp.22-30
    • /
    • 2001
  • 본 논문은 유방질환 중에서 유관(duct )에 발생하는 유방종양을 Benign, DCIS(ductal carcinoma in situ) NOS (invasive ductal carcinoma)로 분류하기 위해 3가지 분류기 (classifier) 를 생성한 후, 비교 분석하였다. 분류기 생성에서 가장 중요한 단계인 특징 추출 단계에서 세포핵의 기하학적 특징을 형태학적 특징을 추출하여 분류기를 생성하고 염색질 패턴의 내부적 변화를 나타내는 질감 특징을 추출하여 2가지 배율(100/400배)에서 2개의 분류기를 생성하였다. 400배 배율의 유방질환 영상에서 세포핵을 추출하여 핵의 형태학적 특징값인 핵의 면적, 둘레. 가로, 세로(장. 단축) 의 길이, 원형성의 비율을 구한 후 이 특징값들을 조합하여 판별분석에 의해 분류기를 생생하고, 분류 정확도를 검증하였다. 100배 배율과 400배의 배율의 유방질환 영상에서 1, 2, 3, 4 단계(level)의 wavelet 변환를 적용한 후, 분할된 서브밴드에서 GLCM(Gray Level Co-occurrence Matrix)을 이용하여 질감 특징(entropy Energy, Contrast, Homogeneity)를 추출하고, 이 특징값들을 조합하여 판변 분석에 의해 분류기를 생성한 후 분류 정확도를 검증하였다. 이 세 분류기를 비교 분석 하였을때 현민경 100배 배율의 영상을 3단계 wavelet 변환을 적용하고 질감 특징을 추출하여 생성한 분류기가 다른 두 분류기보다 유방 질환 Benign, DCIS; NOS를 분류하는데 더 나은 결과를 보였다.

  • PDF

설계 패턴 재사용 라이브러리 구현 (Implementation of Library for Design Pattern Reuse)

  • 김행곤;김지영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권1호
    • /
    • pp.48-62
    • /
    • 2001
  • 다양한 플랫폼 상에서 응용 시스템에 대한 개발, 배포, 운영의 고생산성과 고품질을 얻기 위해서는 소프트웨어 구성 요소들의 체계적인 재사용 접근과 자동화된 도구의 지원이 요구된다. 함수나 클래스 라이브러리에서 설계 패턴과 프레임워크, 그리고 최근의 상업적인 비즈니스 컴포넌트에 이르기까지 여러 재사용 방법이 제시되었으나 기대만큼의 확실한 효과를 얻을 수 없었다. 설계 패턴은 설계 경험에 대한 캡슐화된 빌딩 블록으로 개발 응용의 표준화된 아키텍쳐 제공을 통해 응용 도메인의 한정성과 클래스 수준의 재상용의 복잡성을 극복할 수 있다. 응용 개발의 표준 아키텍쳐로서의 웹을 통한 재사용 요소들의 공유는 여러 개발자들에 의한 다양한 도메인 요소로서의 전개와 동적이며 실시간적인 라이브러리 관리가 가능하다. 본 논문에서는 웹 환경 하에서 자동화된 설계 패턴 재사용 환경 구축을 목적으로 한다. 그러므로 For Reuse 관점에서 서버 상에 각 도메인별 패턴 라이브러리를 구축하며 With Reuse 관점에서 패턴 검색, 이해, 획들 그리고 재구조화를 통한 응용으로의 재사용 지원기를 구축한다. 본 시스템은 패턴의 공유에 의한 유사 도메인 응용의 표준화를 유도하고 사용자의 패턴 재정의에 의한 자생적을 확장 가능한 패턴 라이브러리 제공이 가능하다. 또한 이를 위해 도메인 분석을 통한 패턴의 행위와 의도를 기준으로 설계 패턴들을 분류, 카탈로깅하여 재사용 라이브러리를 제시한다.

  • PDF

사각형 특징 기반 분류기와 클래스 매칭을 이용한 실시간 얼굴 검출 및 인식 (Real Time Face Detection and Recognition using Rectangular Feature based Classifier and Class Matching Algorithm)

  • 김종민;강명아
    • 한국콘텐츠학회논문지
    • /
    • 제10권1호
    • /
    • pp.19-26
    • /
    • 2010
  • 본 논문은 사각형 특징 기반 분류기를 제안하여 실시간으로 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘을 구현하고자 한다. 제안한 알고리즘은 특징 생성, 분류기 학습, 실시간 얼굴 영역 검출의 세 단계로 구성된다. 특징 생성은 제안된 5개의 사각형 특징으로 특징 집합을 구성하며, SAT(Summed-Area Tables)를 이용하여 특징 값을 효율적으로 계산한다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 분류기를 계층적으로 생성한다. 또한 중요한 얼굴 패턴은 다음 레벨에 반복적으로 적용함으로써 우수한 검출 성능을 가진다. 실시간 얼굴 영역 검출은 생성된 사각형 특징 기반 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 또한 얼굴 영역을 검출한 영역을 인식의 입력 영상으로 사용하여 PCA와 KNN 알고리즘을 이용하여 기존의 매칭 방법인 Point to point 방법이 아닌 Class to Class 방식을 이용하여 인식률을 향상시켰다.

UHF 대역에서 가스절연개폐기의 결함별 부분방전 신호특성 분석 (Characteristics of PD Signatures due to GIS defects in UHF Band)

  • 권태호;김동명;이남우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.482-483
    • /
    • 2006
  • 배전급 가스절연개폐기(이하 개폐기)에서 발생하는 고장을 예방하기 위해서는 개폐기 내부에서 발생하는 부분방전 신호로부터 방전의 원인을 추정하는 것이 중요하다. 본 논문에서는 개폐기 내부의 결함을 다양하게 모의하여 방전원에 대한 신호 패턴을 분류하고 방전 원인별로 특성을 분석하였다.

  • PDF

스마트폰 환경에서 개인화된 행위 인식기 및 로거 (Personalized Activity Recognizer and Logger in Smart Phone Environment)

  • 조금환;한만형;이호성;이승룡
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.65-68
    • /
    • 2012
  • 본 논문에서는 최근 활발히 연구가 진행되고 있는 행위인식 연구 분야 중에서 스마트폰 환경에서의 개인화된 행위 인식기 및 로거를 제안한다. 최근 스마트폰의 보급이 활발해지면서 행위 인식 연구 분야에서 스마트폰을 이용하는 연구가 활발히 진행되고 있다. 그러나 스마트폰에서는 센서를 이용하여 행위정보를 수집하고, 서버에서 는 분류 및 처리하는 방식으로 실시간 인식과 개발자에 의한 트레이닝으로 인해 개인화된 트레이닝이 불가능하다는 단점이 있다. 이러한 단점을 극복하고자 Naive Bayes Classifier를 사용하여 스마트폰 환경에서 실시간으로 사용자 행위 수집이 가능하고 행위정보의 분류 및 처리가 가능한 경량화 및 개인화된 행위 인식기 및 로거의 구현을 목적으로 한다. 제안하는 방법은 행위 인식기를 통해 행위 인식이 가능할 뿐만 아니라 로거를 통해 사용자의 라이프로그, 라이프패턴 등의 연구 분야에 이용이 가능하다.

  • PDF

계층형 신경회로망을 이용한 염색체 영상의 핵형 분류 (Karyotype Classification of The Chromosome Image using Hierarchical Neural Network)

  • 장용훈
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권8호
    • /
    • pp.1045-1054
    • /
    • 2001
  • 본 논문에서는 염색체의 핵형을 자동으로 분류하는 연구방법을 개선하기 위하여 염색체의 영상을 재구성하는 방법과 패턴의 인식을 위해 계층형 신경회로망의 구현에 관한 두 가지의 알고리즘을 제안한다. 먼저 영상 재구성방법을 사용하여 임상적으로 정상인으로 판명된 20명의 염색체 영상에서 형태 구조학적인 특징정보와 농도정보를 추출하였다. 10명에 대하여 추출한 정보를 다섯 가지로 조합하여 계층형 신경회로망(Hierarchical Multilayer Neural Network: HMNN)의 학습입력으로 사용하여 핵형을 분류할 수 있는 패턴인식기를 구현하였다. 그리고 나머지 10명에 대한 다섯 가지의 조합된 정보를 HMNN의 분류입력으로 사용하여 실험한 결과 약 98.26%의 우수한 인식률을 나타내는 최적화된 계층적 인공신경회로망을 구현할 수 있었다.

  • PDF

커널 이완 절차에 의한 커널 공간의 저밀도 표현 학습 (Spare Representation Learning of Kernel Space Using the Kernel Relaxation Procedure)

  • 류재홍;정종철
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.817-821
    • /
    • 2001
  • 본 논문은 분류 문제의 훈련 패턴으로부터 형성되는 커널 공간의 저밀도 표현을 가능하게 하는 커널 방법에 대한 새로운 학습방법론을 제안한다. 선형 판별 함수에 대한 기존의 학습법 중에서 이완 절차가 SVM(Support Vector Machine) 분류기와 동등하게 선형분리 가능 패턴분류 문제의 최대 마진 분리 초평면을 얻을 수 있다. 기존의 이완 절차는 지원 백터에 대한 필요 조건을 만족한다. 본 논문에서는 학습 중 지원 벡터를 확인하기 위한 충분 조건을 제시한다. 순차적 학습을 위하여 기존의 SVM을 확장하고 커널 판별함수를 정의한 후에 체계적인 학습방법을 제시한다. 실험 결과는 새 방법이 기존의 방법과 동등하거나 우수한 분류 성능을 갖고있음을 보여준다.

  • PDF

컨벡스 집합을 기반으로한 클래시피케이션 (Convex-Set-Based Classification)

  • 박상국;여희주;김재현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.636-639
    • /
    • 1999
  • 본 논문에서는 기존의 FMMCNN이나 Fuzzy ART에서 Hyperbox를 정형으로 이용한 방법보다 적응적으로 분류가 가능한 컨벡스 집합을 기반으로 한 새로운 클래시피케이션 기법을 제안하였다. 컨벡스 다면체를 적응적으로 생성하기 위하여 퍼지 뉴럴 네트웍 분류기를 구성하고, 이를 이용한 패턴 클래스들을 생성하였다. 마지막으로, FMMCNN과의 다양한 시뮬레이션을 수행하여 본 논문의 우수성을 입증하였다.

  • PDF

다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계 (Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization)

  • 김욱동;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF