• 제목/요약/키워드: 패턴분류기

검색결과 390건 처리시간 0.038초

한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현 (An Implementation of Automatic Genre Classification System for Korean Traditional Music)

  • 이강규;윤원중;박규식
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.

스팸성 자질과 URL 자질을 이용한 최대엔트로피모델 기반 스팸메일 필터 시스템 (A Spam Filter System based on Maximum Entropy Model Using Spamness Features and URL Features)

  • 공미경;이경순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.213-219
    • /
    • 2006
  • 본 논문에서는 스팸메일에 나타나는 스팸성 자질과 URL 자질을 이용한 최대엔트로피모델 기반 스팸 필터 시스템을 제안한다. 스팸성 자질은 스패머들이 스팸메일에 인위적으로 넣는 강조 패턴이나 필터 시스템을 통과하기 위해 비정상적으로 변형시킨 단어들을 말한다. 스팸성 자질 외에 반복적으로 나타나는 URL과 비정상적인 Ink도 자질로 사용하였다. 메일 수신자에게 추가적인 정보 제공을 목적으로 하이퍼링크로 연결시키거나 메일에 직접 타이핑한 URL 중 필터 시스템을 피하기 위해 유효하지 알은 비정상적인 URL들이 스팸 메일을 걸러내는데 도움을 줄 수 있기 때문이다. 또한 스팸성 자질과 URL을 각각 적용한 두 분류기를 통합하였다. 분류기의 통합은 각 분류기에 이용된 자질을 독립적으로 사용할 수 있다는 장점을 가지고 있다. 실험 결과를 통해 스팸성 자질과 URL을 이용함으로써 스팸 필터 시스템의 성능을 향상시킬 수 있음을 확인할 수 있었다.

  • PDF

재귀적 기하 분해 방법에 기반한 봉제 패턴의 사각화 방법 (Quadrangulation of Sewing Pattern Based on Recursive Geometry Decomposition)

  • 위르가고초;정문환;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권2호
    • /
    • pp.1-10
    • /
    • 2016
  • 의상 시뮬레이션과 렌더링 계산 비용은 메쉬의 종류와 그 품질에 크게 좌우 된다. 일반적으로 정확도와 효율성 면에서 삼각메쉬 보다 사각메쉬가 더 선호된다. 본 논문은 재귀 기하 분할법에 기초한 의복 패턴의 사각화 방법을 기술한다. 논문에서는 기존의 방법에서 두 가지 개선점을 제안한다. 첫째, 제안 방법은 기존의 방법보다 향상 된 회귀 기하 분해 알고리즘을 사용한다. 제안된 방법에서 의복패턴의 물리적 도매인은 보다 더 간단하고 맵핑 가능한 형태로 분해된다. 둘째, 본 논문에서는 정점 분류 알고리즘의 유효성 확인작업을 수행한다. 제안 알고리즘을 이용하여 인식 되지 않은 정점 분류에 대한 유효성을 검증 할 수 있다.

스트리밍 데이터에 대한 적응적 점층적 분류기의 적용 (Application of an Adaptive Incremental Classifier for Streaming Data)

  • 박정희
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1396-1403
    • /
    • 2016
  • 시간이 흐름에 따라 데이터 분포가 변하거나 관심 개념이 달라질 수 있는 스트리밍 데이터 분석에서 개념 변화에 적응해 나갈 수 있는 능력은 점층적 학습 과정에서 매우 중요하다. 이 논문에서는 개념 변화를 가진 스트리밍 데이터에서 적응적 점층적 분류기를 위한 일반화된 프레임워크를 제안한다. 분류기에 의해 예측되는 신뢰도 벡터와 클래스 라벨 벡터 사이의 거리를 이용하여 분류기 성능 패턴을 나타내는 분포를 구성하고 컨셉 변화에 대한 가설 검정을 수행한다. 추정되는 p-값을 이용하여 오래된 데이터에 대한 가중치를 자동으로 조정하여 분류기 업데이트에 이용한다. 제안된 방법을 두 가지 타입의 선형 판별 분류기에 적용한다. 컨셉 변화를 가진 스트리밍 데이터에 대한 실험 결과는 제안하는 적응적 점층적 학습 방법이 점층적 분류기의 예측 정확도를 크게 향상시킴을 입증한다.

아이다부스트(Adaboost)와 원형기반함수를 이용한 다중표적 분류 기법 (Multi-target Classification Method Based on Adaboost and Radial Basis Function)

  • 김재협;장경현;이준행;문영식
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.22-28
    • /
    • 2010
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 분류기로 Adaboost가 주목받고 있다. Adaboost는 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나, Adaboost는 이진 분류기이므로 다중표적 분류 문제에 곧바로 적용할 수 없다. 일반적으로 다중 분류 문제를 해결하는 기법으로 One-Vs-All 기법과 Pair-Wise 기법이 대표적이다. 이러한 두 기법은 다중 분류 문제를 여러 개의 이진 분류 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 기법으로 실제 시스템 구성에 적합할만한 분류 성능을 보여주지 못하는 경우가 대부분이다. 본 논문에서는 이진 분류기인 Adaboost의 다중 분류 확장 방안으로 원형 기반 함수를 약한 분류기로 이용하는 Adaboost 기반 다중표적 분류 기법을 제안한다.

데이터마이닝 기법을 이용한 변압기 부하패턴 분석 (Load Pattern Analysis of Distribution Transformer using Data Mining Techniques)

  • 신진호;김영일;이봉재;송재주;양일권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1879-1880
    • /
    • 2008
  • 시간 데이터마이닝은 기존 데이터마이닝에 시간 개념을 추가하여 시간 속성을 가진 데이터로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술이다. 이 논문에서는 시간 속성을 가진 변압기 부하 패턴에 대해 시간의 변화에 따른 적용 시점이 명확한 지식 탐사가 가능하고, 향후 부하 예측에 있어 탐사된 규칙과 시간 지식을 이용함으로써 기존의 정적인 분류규칙을 적용한 방법보다 더 정확한 예측을 할 수 있는 새로운 시간 패턴 마이닝 기법을 제안한다.

  • PDF

최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘 설계 (Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner)

  • 마창민;유성훈;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.748-753
    • /
    • 2012
  • 본 논문에서는 최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘을 설계한다. 일반적으로 2차원 영상을 이용한 얼굴인식 시스템은 사진의 명암도를 이용하여 얼굴의 특징을 추출하게 된다. 그렇기 때문에 빛이나 조명, 또는 얼굴 포즈와 같은 환경 변화들은 시스템의 성능을 저하시킨다. 따라서 본 논문에서 제안된 얼굴인식 알고리즘은 2차원 얼굴인식 시스템의 한계를 극복하기 위하여 3차원 스캐너를 사용하여 설계한다. 먼저 3차원 스캐너를 이용하여 얼굴 형상을 스캔하고 스캔된 얼굴 형상은 포즈 보상 과정을 통하여 정면으로 변환된다. 그 후에 Point Signature 기법을 사용하여 얼굴의 깊이 정보를 추출하고 마지막으로 고차원 패턴인식 문제에 대한 해결을 위하여 최적화된 pRBFNNs (Polynomial-based Radial Basis Function Neural Networks) 모델을 사용하여 인식성능을 확인한다.

곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식 (Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG)

  • 이영학;고주영;석정희;노태문;심재창
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권6호
    • /
    • pp.654-662
    • /
    • 2010
  • 본 논문은 2단계 연속(cascade) 방법을 이용한 향상된 보행자/비보행자 인식 알고리즘을 제안한다. 인식을 위한 분류기로는 약한 분류기를 강한 분류기로 만드는 아다부스트 알고리즘을 적용하였다. 먼저 두 가지 특징벡터를 추출 한다: (i) 기존의 기울기 히스토그램(HOG) 특성과 (ii) 한 점이 가지는 곡률특성 네 가지를 이용한 곡률-HOG를 제안하고 이용하였다. 그 다음 훈련 영상을 통하여 두 가지의 특징 벡터에 대해 약한 분류기로부터 강한 분류기를 얻었으며, 인식은 입력 영상으로부터 하나의 특징을 선택하여 이미 만들어진 강한 분류기를 통하여 1차적인 인식과 오인식을 실시하며, 오인식된 영상에 대해 2차적인 특징을 투입하여 이에 해당하는 강한 분류기를 통하여 2단계 아다부스트 알고리즘을 적용하여 최종적인 인식결과를 얻는다. 두 가지의 서로 다른 특성 벡터를 이용하여 연속 방법에 의한 2단계 아다부스트 알고리즘을 적용한 결과 기존의 실험 방법보다 더 정확한 인식 결과를 얻을 수 있었다.

컨텍스트 인식 기반 개인화 추천 서비스를 위한 사용자 행동패턴 추론 모델 (A Model to Infer Users' Behavior Patterns for Personalized Recommendation Service based Context-Awareness)

  • 서효석;이상용
    • 디지털융복합연구
    • /
    • 제10권2호
    • /
    • pp.293-297
    • /
    • 2012
  • 컨텍스트 인식 환경에서 개인화 추천 서비스를 제공하기 위해서는 수집된 컨텍스트 정보를 빠르게 분석하고, 효과적으로 사용자의 목적을 추론할 수 있어야 한다. 그러나 모바일 장비에서 수집되는 컨텍스트는 환경에 따라 데이터의 차이가 발생함으로 인해 기존의 추론 알고리즘을 그대로 적용하기에는 적합하지 않고 모바일 환경에 적합한 효율적인 알고리즘이 필요하다. 본 연구에서는 정보의 누락이나 오류 등으로 인한 손실을 최소화하기 위해 나이브 베이즈 분류기를 사용하여 행동 패턴을 분류하였다. 또한 사용자의 성향을 효과적으로 학습하고 행동 목적을 추론하기 위하여 패턴 매칭 기법을 시용하였다. 제안한 개인화 추천 서비스 시스템을 스마트폰에서 어플리케이션을 추천하는 서비스를 적용하여 정확도를 평가하였다.

FPGA에 의한 블록기반 신경망의 설계 (Hardware Design of Block-based Neural Networks Using FPGA)

  • 장정두;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2998-3000
    • /
    • 2000
  • 본 논문에서는 BNN, 블록기반 신경망 모델을 재구성가능 하드웨어(FPGA)로 설계한다. 블록기 반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬 수 있다. 블록기반 신경망의 구조와 가중치를 표현하는 바이너리 스트링을 오프라인으로 진화시킨 후, 재구성가능 하드웨어로 구현한다. FPGA로 구현된 블록기반 신경망의 성능을 확인하기 위하여 간단한 성능시험에 사용되는 대표적인 패턴들을 사용하여 블록기반 신경망의 패턴분류 성능을 알아본다.

  • PDF