본 논문에서는 PCA에 의한 특징추출과 k-NN과 SVM에 기반을 계층구조의 분류기에 의한 유도전동기의 고장진단 알고리즘을 제안한다. 제안된 방법은 k-NN에 의해 선형적으로 분류 가능한 고장패턴을 분류한 후, 분류가 되지 않는 부분을 커널 함수에 의해 고차원 공간으로 입력패턴을 매핑한 후 SVM에 의해 고장을 진단하는 계층구조를 갖는다. 실험장치를 구축한 후, 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.
걸음걸이 패턴 분류는 많은 응용분야가 있을 뿐만 아니라 매우 중요한 연구 분야이다. 따라서 본 연구에서는 허리에 부착된 가속도 모듈로부터 획득된 신호를 이용하여 천천히 걷기(slow walking, S.W), 일반 걷기(normal walking, N.W), 빠르게 걷기(fast walking, F.W) 등의 보행 패턴을 분류하고자한다. 11명의 성인으로부터 블루트스 모듈을 이용하여 100Hz로 샘플링된 3축 가속도 신호를 획득하였다. 획득된 데이터는 웨이브렛 변환을 이용하여 분석하였다. 걸음걸이 패턴은 두가지의 파라미터들을 이용하여 분석되어지는데, 하나는 운동에 해당하는 웨이브렛 계수의 에너지(power)와 전 후방향의 전체 에너지사이의 비율(RPA)이고, 다른 파라미터는 전 후 방향과 상 하 수직 방향 사이에서 웨이브렛 계수의 제곱근 평균 비율(RAV)이다. 천천히 걷기는 다른 걷기와 비교했을 때 작은 RPA값을 가지게 되어 분류가 용이하며, 천천히 걷기는 RAV를 이용하여 일반 걷기와 구별되어 질 수 있었다. 따라서 본연구는 건강한 성인에게서 3축 가속도 신호를 획득한 후 웨이브렛 파라미터를 이용하여 걷기 패턴을 잘 구별할 수 있는 연구임을 확인 하였다.
지문을 5가지 클래스로 나누는 헨리시스템을 기반으로 신경망이나 SVM(Support Vector Machines) 등과 같은 다양한 패턴분류 기법들이 지문분류에 많이 사용되고 있다. 특히 최근에는 높은 분류 성능을 보이는 SVM 분류기의 결합을 이용한 연구가 활발히 진행되고 있다. 지문은 클래스 구분이 모호한 영상이 많아서 단일결합모델로는 분류에 한계가 있다. 이를 위해 본 논문에서는 새로운 분류기 결합모델인 다중결정템플릿(Multiple Decision Templates, MuDTs)을 제안한다. 이 방법은 하나의 지문클래스로부터 서로 다른 특성을 갖는 클러스터들을 추출하여 각 클러스터에 적합한 결합모델을 생성한다. NIST-database4 데이터로부터 추출한 핑거코드에 대해 실험한 결과. 5클래스와 4클래스 분류문제에 대하여 각각 $90.4\%$와 $94.9\%$의 분류성능(거부율 $1.8\%$)을 획득하였다.
본 논문에서는 SpPCA와 MLP에 기반을 둔 융합법칙에 의한 MRS 패턴분류기법을 제안한다. 차원축소를 위해 사용되는 기존의 PCA 기법은 입력데이터가 비선형 특성을 갖는 경우 최적의 변환행렬을 구할 수 없다는 문제점을 가지고 있다. 따라서, 본 논문에서는 구간별로 입력데이터를 분할한 후 PCA에 의해 특징을 추출하는 SpPCA 기법을 이용하여 입력패턴의 차원을 축소한다. 다음 단계인 분류단계에서는 MLP 비선형분류기를 이용하여 구간마다 추출된 특징벡터를 이용하여 기준패턴과의 유사도를 산출한다. 최종 분류단계에서는 MLP에 의해서 산출된 유사도에 기반을 둔 융합법칙에 의하여 MRS 패턴을 분류한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해서 향상된 인식결과를 보임을 확인하였다.
모바일 기기를 활용한 홀터 모니터링으로 환자의 개인별 심전도 신호의 장주기 수집이 가능해졌다. 하지만 이에 따른 의사 결정 지원 도구 및 응용에 대한 연구는 미흡한 실정이다. 본 논문에서는 장주기로 수집된 심전도 신호의 대표패턴을 추출하기 위한 축약 알고리즘을 제안한다. 그리고 추출된 대표패턴을 이용하여 유사한 환자의 목록을 제공하는 검색기를 소개한다. 사례분석을 통해 제안한 유사환자 검색기가 대표패턴을 통해 전문가의 임상활동을 간소화 하며, 유사한 환자의 목록을 제공하여 축적 데이터의 높은 활용 가능성을 제고함을 보였다. 또한, MIT-BIH 부정맥 데이터베이스를 이용한 평가에서, 축약 알고리즘이 64%의 레코드에 대해 단순화된 대표패턴을 제공하며, 부정맥 분류 결과를 평균 98% 축소함을 보였다.
국내의 밭작물 재배에서는 부족한 인력과 시간을 단축하기 위한 농기계 사용이 필수가 되었다. 효율적인 농기계의 개발을 위해서는 농민들의 작업실태 분석이 반드시 선행되어야 한다. 본 연구에서는 감자 재배용 작업기 개발을 위해 전국의 감자 재배 농민을 대상으로 트랙터 작업기 사용실태 조사를 수행하였다. 조사대상은 강원도, 경상북도, 전라남도의 지역중 감자 생산량이 많은 곳을 분류하여 각 지역의 농업기계 대리점에서 추천한 농민을 대상으로 조사표에 의한 방문 면접 설문조사를 실시하였다. 분류된 지역은 강원도 홍천, 평창, 경상북도 고령, 김천, 전라남도 영광, 보성이다. 각 지역별 응답자수는 2명으로 진행하였다. 조사항목은 감자 재배시기, 보유하고 있는 작업기, 트랙터의 모델 및 보유대수, 작업기별 트랙터 주행단수 및 PTO 단수, 작업패턴 등이다. 조사결과, 공통적으로 감자품종 중 수미감자를 선호하는 것으로 조사되었고, 지역별로 시기상의 차이가 있지만 평균적으로 1월~5월과 8월~11월 사이에 감자 이모작을 실시하는 것으로 나타났다. 트랙터의 평균 보유대수는 2대였으며, 평균적으로 중형 트랙터 1대와 대형 트랙터 1대의 비율로 보유하고 있는 것으로 조사되었다. 보유하고 있는 작업기는 로타베이터, 수확기, 시비기, 방제기, 파종기 순으로 보유대수가 많았다. 작업기로 수행하는 밭작업으로는 경운정지, 비닐피복, 시비, 방제, 수확 등이 있었으며, 경운정지용 로터리 작업시 트랙터 주행단수와 PTO 단수는 트랙터의 경우 L2~L3단을 주로 사용하고, PTO의 경우 1단과 2단을 병행하여 사용하는 것으로 조사되었다. 로타베이터 작업패턴은 지역별로 차이를 보였으나, 평균적으로 밭의 모서리를 둘러서 작업하고 이후에 8자형식으로 이동하면서 두둑을 형성하는 것으로 나타났다. 이 작업패턴을 사용하는 이유는 후진을 하지않는 작업환경에서 가장 효율적이고 밭의 모서리에 흙이 모이지 않게하기 위함이라고 하였다.
본 논문에서는 다항식 기반 Type-2 Fuzzy Neural Networks(T2FNN)를 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. T2FNN은 Fuzzy C-Means(FCM)을 Type-2 Fuzzy C-Means로 확장시킨 것이라 할 수 있으며, Input layer, Fuzzyification layer, Inference layer, Deffuzification layer의 4층 네트워크로 구성된다. interval Type-1 퍼지 집합인 후반부의 연결가중치는 Gradient Descent Method를 이용하여 학습한다. 제안된 RBF 신경회로망은 모의데이터와 패턴인식 성능 평가에 많이 사용되는 machine learning 데이터에 적용하여 패턴 분류기로서의 성능을 평가받는다.
본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.
본 논문에서는 일반화된 퍼지 최대-최소 신경망 모델에서 학습 패턴의 빈도요소를 고려하여 개선된 활성화 함수와 학습 방법을 제안한다. 특징공간상에서 하이퍼박스의 활성화를 위한 새로운 기준과 방법을 제시하며, 학습 패턴의 빈도요소가 학습효과에 미치는 영향을 분석한다. 또한 제안된 모델에서 개별 특징값과 하이퍼박스간의 상대적인 연관성을 고려하여 이득치를 계산함으로써, 기존 모델의 하이퍼박스 축소 기법을 대체한 학습효과에 관하여 고찰한다. 실험을 통하여 학습 패턴의 순서 변화와 왜곡된 정보에 안정된 분류기의 성능을 확인한다.
본 논문에서는 얼굴 영상으로부터 자동으로 사람의 감정을 인식하는 효과적인 방법을 제안한다. 얼굴 표정으로부터 감정을 파악하기 위해서는 카메라로부터 얼굴영상을 입력받고, ASM (active shape model)을 이용하여 얼굴의 영역 및 얼굴의 주요 특징점을 추출한다. 추출한 특징점으로부터 각 장면별로 49차의 크기 및 변이에 강인한 특징벡터를 추출한 후, 통계기반 패턴분류 방법을 사용하여 얼굴표정을 인식하였다. 사용된 패턴분류기는 Naive Bayes, 다중계층 신경회로망(MLP; multi-layer perceptron), 그리고 SVM (support vector machine)이며, 이중 SVM을 이용하였을 때 가장 높은 최종 성능을 얻을 수 있었으며, 6개의 감정분류에서 50.8%, 3개의 감정분류에서 78.0%의 인식결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.