• Title/Summary/Keyword: 패턴데이터

Search Result 3,444, Processing Time 0.031 seconds

A New Method for Detecting Isotope Patterns in Liquid Chromatography/Mass Spectrometry Data (LC/MS 데이터에서 동위 원소 패턴을 찾는 새로운 방법)

  • Kim, Youn-Dong;Han, Joon-Hee;Hwang, Ji-Woon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.167-177
    • /
    • 2004
  • 본 논문에서는 LC/MS 데이터로부터 동위 원소 패턴(isotope pattern)을 찾는 새로운 방법을 제시하고자 한다. 기존의 분석 방법에서는 LC/MS 데이터를 1차원적으로 분석하고 있기 때문에 2차원에서 적용할 수 있는 알고리즘을 적용하기가 어렵다. LC/MS 데이터를 2차원 영상으로 가시화해 본 결과, 하나의 동위 원소 패턴에 속하는 단일 동위 원소 피크(single isotope peak)는 모양, 크기와 같은 2차원 형태적 특징들도 유사함을 알 수 있다. 따라서, 기존의 방법들이 질량 스펙트럼과 같은 1차원 신호를 분석하는 것에 중점을 둔 것에 비해, 본 논문에서는 LC/MS 데이터를 2차원 신호 즉, 영상(image)으로 간주하고 영상 처리 방법과 객체 인식 방법을 적용하였다. 실험 결과 같은 동위 원소 패턴에 속하는 각각의 단일 동위원소 피크들 사이에 peak maxima position 뿐만 아니라 skewness, variance등도 유사였으며 이러한 유사도를 기반으로 동위 원소 패턴을 찾을 수 있었다.

  • PDF

Conceptual Pattern Matching of Time Series Data using Hidden Markov Model (은닉 마코프 모델을 이용한 시계열 데이터의 의미기반 패턴 매칭)

  • Cho, Young-Hee;Jeon, Jin-Ho;Lee, Gye-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.44-51
    • /
    • 2008
  • Pattern matching and pattern searching in time series data have been active issues in a number of disciplines. This paper suggests a novel pattern matching technology which can be used in the field of stock market analysis as well as in forecasting stock market trend. First, we define conceptual patterns, and extract data forming each pattern from given time series, and then generate learning model using Hidden Markov Model. The results show that the context-based pattern matching makes the matching more accountable and the method would be effectively used in real world applications. This is because the pattern for new data sequence carries not only the matching itself but also a given context in which the data implies.

Application of emerging patterns for multi-source data classification and analysis (멀티 소스 데이터 분류와 분석을 위한 이머징 패턴의 적용 방법)

  • Yoon Hye-Sung;Lee Sang-Ho;Kim Ju Han
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.244-246
    • /
    • 2005
  • 상호작용하는 구조들을 하나의 클래스로 표현하는 데이터 마이닝 툴로서 이머징 패턴(EP)이 최근에 제안되었다. 기존의 클러스터링 알고리즘과 패턴 마이닝 알고리즘은 고차원의 유전자 발현 데이터 흑은 같은 변수들(e.g. genes)을 가지고 실험한 멀티 소스 데이터 분석을 다루기에 부적절하고, 실험 결과를 이해하는 데에 어려움이 있다. 그러나 EP는 분류 트리의 형태로 표현 가능하기 때문에, 다양한 형식의 데이터를 분류하는 패턴들을 빠르고 간단하게 구성하여 데이터 분석이 가능하도록 돕는다. 본 논문에서는 멀티 소스 바이오 데이터에서 분류 절차의 작업을 향상시키기 위하여 EP를 사용하는 간단한 스킴을 제안한다.

  • PDF

Investigating Cyclic Pattern of Mobility through Analysis of Geopositioning Data (이동데이터 시간분석을 통한 이동양태 파악)

  • Hong, Suchan;Song, Ha Yoon
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.723-726
    • /
    • 2019
  • 사람은 한 장소를 방문할 때 순환 패턴이 있으며, 이 패턴에 여러 싸이클의 경향이 있다. 요즘은 스마트폰 및 기타 휴대용 장치로 개인 이동성 데이터를 수집하는 것이 가능하다. 이러한 장치는 다양한 위치 데이터를 수집하고 여러가지 방법으로 분석할 수 있게 해준다. 위치 수집기를 기반으로 지구 위치 데이터에서 추출된 사람의 이동성 모델을 수립하고, 위치 클러스터를 방문자의 순환 패턴을 조사할 수 있다. 수년 동안 수집된 개인의 이동성 모델을 토대로 클러스터 재방문 시간을 계산 후 분석하여 그래프로 시각화하였다. 시간 순서의 위치 클러스터와 방문 클러스터에 대한 위치 데이터는 1 분 단위로 측정된다. 전체 데이터 방문 횟수는 15 분마다 정규화하고, 자원 봉사자의 다양한 지리적 위치 데이터 셋에 대해 방문의 순환 패턴은 자기 상관, 자기 공분산 및 재방문 시간으로 살펴볼 수 있다.

Searching for Spatio-Temporal Pattern in EEG Signal with Hypernetwork (하이퍼네트워크를 이용한 EEG 신호의 시공간적 패턴 탐색)

  • Kim, Eun-Sol;Lee, Chung-Yeon;Lee, Ki-Seok Kevin;Lee, Hyun-Min;Kim, Joon-Shik;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.331-334
    • /
    • 2011
  • 입력 데이터의 공통적인 특징을 찾아내는 방법은 기계 학습 분야의 중요한 분야이다. 일반적으로 입력 데이터의 형태적 패턴을 찾아내는 알고리즘들이 많이 연구되었는데, 최근에는 데이터의 입력 순서 또는 데이터 사이의 시간적 인과 관계와 같이 시간에 연관된 패턴을 찾는 방법이 주목을 받고 있다. 우리는 형태적 혹은 공간적 패턴 탐색에 뛰어난 성능을 보이는 하이퍼네트워크 모델을 확장하여 입력 데이터의 시공간적 패턴을 찾는 방법을 제시한다. 하이퍼네트워크는 두 개 이상의 변수를 하나의 엣지로 연결하여 문제공간을 탐색하는 모델로, 시간과 공간의 변수를 동시에 고려하여 데이터의 특성을 찾아내는 데에 적합하다. 이를 확인하기 위하여 사람의 EEG 신호를 분석하였는데, 시각적인 정보를 처리할 때와 언어적 정보를 처리할 때의 특징적인 패턴들을 찾았다.

A City Path Travel Time Estimation Method Using ATMS Travel Time and Pattern Data (ATMS 교통정보와 패턴데이터를 이용한 도시부도로 통행시간 추정방안 연구)

  • KIM, Sang Bum;KIM, Chil Hyun;YOO, Byung Young;KWON, Yong Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2015
  • ATMS calculates section travel time using two-way communication system called DSRC(Dedicated Short Range Communications) which collects data of RSE (Road Side Equipment) and Hi-pass OBU (On-board Unit). Travel time estimation in urban area involves uncertainty due to the interrupted flow. This study not only analyzed real-time data but also considered pattern data. Baek-Je-Ro street in Jeon-Ju city was selected as a test site. Existing algorithm was utilized for data filtering and pattern data building. Analysis results repoted that travel time estimation with 20% of real-time data and 80% of pattern data mixture gave minimum average difference of 37.5 seconds compare to the real travel time at the 5% significant level. Results of this study recommend usage of intermixture between real time data and pattern data to minimize error for travel time estimation in urban area.

Data Quality Management Method base on Seasonality from Time series Data (시계열 데이터 특성 기반 품질 관리 방법 연구)

  • Lee, Jihoon;Moon, Jaewon;Hwang, Jisoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.93-96
    • /
    • 2022
  • IoT 기기의 보급 및 확산으로 많은 산업군에서 이를 바탕으로 시계열 데이터를 획득하고 분석하려는 시도가 확대되고 있다. 시간의 흐름에 따라 저장된 데이터들은 주기에 따라 특정 패턴을 갖는 경우가 많으며 이러한 패턴을 파악한다면 주요 산업군의 의사 결정에 도움이 된다. 그러나 IoT 기기의 수집 오류 및 네트워크 환경에 의해 대부분의 시계열 데이터들은 누락 데이터, 이상 데이터를 갖고 있으며 이를 처리하지 않고 분석할 경우 오히려 잘못된 결과를 초래한다. 본 논문에서는 패턴 파악을 위해 '시간, 일, 주, 월, 년' 등 시간의 주기를 기준으로 데이터를 분할하며 이에 기반하여 데이터셋을 재구성하고 활용 가능한 데이터와 불가능한 데이터로 구분한다. 선별된 데이터셋은 클러스터링에 적용하였으며, 제안하는 방법을 적용할 경우 주기를 갖는 시계열 데이터를 활용하는 분석 및 학습에서 더 나은 결과를 보임을 확인하였다.

  • PDF

The Method for Extracting Meaningful Patterns Over the Time of Multi Blocks Stream Data (시간의 흐름과 위치 변화에 따른 멀티 블록 스트림 데이터의 의미 있는 패턴 추출 방법)

  • Cho, Kyeong-Rae;Kim, Ki-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.377-382
    • /
    • 2014
  • Analysis techniques of the data over time from the mobile environment and IoT, is mainly used for extracting patterns from the collected data, to find meaningful information. However, analytical methods existing, is based to be analyzed in a state where the data collection is complete, to reflect changes in time series data associated with the passage of time is difficult. In this paper, we introduce a method for analyzing multi-block streaming data(AM-MBSD: Analysis Method for Multi-Block Stream Data) for the analysis of the data stream with multiple properties, such as variability of pattern and large capacitive and continuity of data. The multi-block streaming data, define a plurality of blocks of data to be continuously generated, each block, by using the analysis method of the proposed method of analysis to extract meaningful patterns. The patterns that are extracted, generation time, frequency, were collected and consideration of such errors. Through analysis experiments using time series data.

Adaptation Methods for a Probabilistic Fuzzy Rule-based Learning System (확률적 퍼지 룰 기반 학습 시스템의 적응 방법)

  • Lee, Hyeong-Uk;Byeon, Jeung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.223-226
    • /
    • 2007
  • 지식 발견 (knowledge discovery)의 관점에서, 단기간 동안 취득된 데이터 패턴을 학습하고자 하는 경우 데이터에 비일관적인(inconsistent) 패턴이 포함되어 있다면 확률적 퍼지 룰(probabilistic fuzzy rule) 기반의 지식 표현 방법 및 적절한 학습 알고리즘을 이용하여 효과적으로 다룰 수 있다. 하지만 장기간 동안 지속적으로 얻어진 데이터 패턴을 다루고자 하는 경우, 데이터가 시변(time-varying) 특성을 가지고 있으면 기존에 추출된 지식을 변화된 데이터에 활용하기 어렵게 된다. 때문에 이러한 데이터를 다루는 학습 시스템에는 패턴의 변화에 맞추어 갈 수 있는 지속적인 적응력(adaptivity)이 요구된다. 본 논문에서는 이러한 적응성의 측면을 고려하여 평생 학습(life-long learning)의 관점 에 서 확률적 퍼지 룰 기반의 학습 시스템에 적용될 수 있는 두 가지 형태의 적응 방법에 대해서 설명하도록 한다.

  • PDF

A Loglet Analysis of Voice and Data Service Diffusion Pattern (Loglet 분석을 이용한 음성 및 데이터 서비스의 수요 확산 패턴 차이)

  • 김문수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.69-73
    • /
    • 2000
  • 정보통신기술의 역사는 다른 산업 기술에 비해 매우 일천하다. 그러나 현재 가장 빠르게 진보하고 있는 기술이며, 기업활동과 개인의 일상 생활에 커다란 영향 요소로 대두되고 있다. 특히 인터넷의 영향은 지대하다. 인터넷을 이용하여 기업의 생산성을 증대하거나 전자 상거래와 같은 새로운 형태의 사업 기회 제공의 장이 되고 있다. 또한 개인은 매우 다양하고 방대한 정보를 획득, 이용함으로써 자신의 효용을 극대화할 수 있다. 이는 사회, 경제의 새로운 패러다임의 출현으로까지 표현되고 있다. 따라서 과거의 음성통신 서비스 수요와 현재 및 미래의 데이터 통신 수요의 패턴에는 많은 차이가 존재할 수 있다. 본 논문은 대표적 음성 서비스인 전화 서비스 그리고 데이터 서비스라 할 수 있는 인터넷 서비스를 대상으로 수요 속성별 즉, 업무용과 가정용 수요의 확산 패턴을 Logier 분석을 이용하여 고찰하였다. 분석 결과 전체적으로 음성보다는 데이터 수요 확산 속도가 컸으며, 수요 속성별로는 데이터 서비스에서 업무용보다 가정용확산이 음성의 경우보다 훨씬 빠르게 이루어지고 있었다. 그리고 인터넷 가입에 대한 여러 결과를 얻었으며, 이는 정보통신관련 기업과 정책 당국자에게 매우 중요한 자료로 활용할 수 있을 것으로 기대된다.

  • PDF