• 제목/요약/키워드: 패치형 외인성 패브리-페롯

검색결과 2건 처리시간 0.019초

패치형 광섬유 센서를 이용한 구조물의 동특성 감지 및 퍼지 진동 제어 (On-line Phase Tracking of Patch Type EFPI Sensor and Fuzzy Logic Vibration Control)

  • 한재흥;장영환;김도형;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.568-574
    • /
    • 2004
  • On-line phase tracking of an extrinsic Fabry-Perot interferometer (EFPI) and experimental vibration control of a composite beam with a sensing-patch are investigated. We propose a sensing-patch for the compensation of the interferometric non-linearity. In this paper, a sensing-patch that comprises an EFPI and a piezo ceramic(PZT) is fabricated and the characteristics of the sensing-patch are experimentally investigated. A simple and practical logic is applied for the real-time tracking of optical phase of an interferometer. Experimental results show that the proposed sensing-patch does not have the non-linear behavior of conventional EFPI and hysteresis of piezoelectric material. Moreover, it has good strain resolution and wide dynamic sensing range. Finally, the vibration control with the developed sensing-patch has been performed using Fuzzy logic controller, and the possibility of sensing-patch as a sensoriactuator is considered.

  • PDF

패치형 광섬유 센서를 이용한 구조물의 동특성 감지 및 퍼지 진동 제어 (On-line Phase Tracking of Patch Type EFPI Sensor and Fuzzy Logic Vibration Control)

  • 장영환;김도형;이인;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.726-733
    • /
    • 2004
  • On-line phase tracking of an extrinsic Fabry-Perot interferometer (EFPI) and experimental vibration control of a composite beam with a sensing-patch are investigated. We propose a sensing-patch for the compensation of the interferometric non-linearity. In this paper. a sensing-patch that comprises an EFPI and a piezo ceramic(PZT) is fabricated and the characteristics of the sensing-patch are experimentally investigated. A simple and practical logic is applied for the real-time tracking of optical phase of an interferometer Experimental results show that the proposed sensing-patch does not have the non-linear behavior of conventional EFPI and hysteresis of piezoelectric material. Moreover, it has good strain resolution and wide dynamic sensing range. Finally, the vibration control with the developed sensing-patch has been performed using Fuzzy logic controller, and the possibility of sensing-patch as a sensoriactuator is considered.