• 제목/요약/키워드: 팜맵

검색결과 10건 처리시간 0.036초

딥러닝을 이용한 농경지 팜맵 판독 적용 방안 (The Application Methods of FarmMap Reading in Agricultural Land Using Deep Learning)

  • 위성승;정남수;이원석;신용태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.77-82
    • /
    • 2023
  • 본 논문은 농림축산식품부에서 구축한 농경지 전자지도인 팜맵을 딥러닝을 이용하여 농경지 속성정보인 논, 밭, 인삼, 과수, 시설, 비경지의 속성 정보를 판독하는 방안을 제안한다. 팜맵은 항공 및 위성 영상을 이용하여 현실 세계의 농경지를 디지털화하여 작물 생산 현황 파악과 드론 운영에 공간정보로 활용되고 있으며, 판독 매뉴얼을 작성하여 매년 사람을 통해 농경지의 경계를 구획하고 속성을 판독하여 갱신한다. 사람을 통한 농경지 속성판독은 사람의 판독 역량과 경험에 따라 차이를 보이며, 판독 오류는 예산과 공간적 시간적 한계로 직접 현장에 갈 수 없어 현실적으로 검증이 쉽지 않다. 팜맵은 5가지의 농경지 속성의 이미지에 해당 객체의 위치 정보와 클래스 정보를 가지고 있어 적합한 AI의 기법은 인스턴스 분할 모델인 ResNet50으로 실험을 진행하였으며, 딥러닝을 이용한 농경지 속성판독과 사람에 의한 속성판독 결과를 비교하여, 향후 다른 결과를 나타내는 속성판독에 집중하여 기술을 개발한다면 속성 오류를 줄이고 농경지 전자지도의 정확성 향상에 큰 역할을 할 것으로 기대된다.

스마트팜맵과 토양물리특성을 활용한 Terra MODIS 기반의 농지 토양수분 및 가뭄 현황 분석 (Analysis of soil moisture and drought in agricultural lands based on Terra MODIS using smart farm map and soil physical properties)

  • 정지훈;이용관;강찬;방종한;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.375-375
    • /
    • 2023
  • 본 연구는 농지를 대상으로 토양수분 및 가뭄 현황을 분석하는 데 그 목적이 있다. 토양수분을 파악하기 위해 Terra MODIS(Moderate Resolution Imaging Spectroradiometer) 위성영상기반의 토양수분 산정모형을 개발하였다. 해당 모형은 MODIS LST(Land Surface Temperature) 및 NDVI(Normalized Difference Deficit Index)를 기반으로 SCS-CN(Soil Conservation Service-Curve Number) 방법에서 착안한 수문학적 개념 5일 선행강우 및 무강우일수를 입력자료로 하며, 토양 종류 및 계절에 따른 토양수분의 특성을 고려하였다. 모형의 개발을 위해 MODIS LST 및 NDVI 영상을 2013년부터 2022년까지 각각 일별 및 16일 단위로 구축하였으며, 동 기간에 대해 전국 88개소의 기상청 종관기상관측소의 강수량 및 LST 자료를 수집하였다. MODIS LST는 실측 LST 자료를 활용해 조건부합성기법을 적용하여 상세화하였고, 수집된 강수량자료는 역거리가중법을 활용해 공간 보간을 수행하였다. 토양특성의 구분은 농촌진흥청에서 정밀토양도를 수집하여 활용하였다. 공간 분포된 토양수분에서 농지에 해당하는 토양수분을 추출하기 위해 스마트팜맵을 구축하고, 농지 속성에 해당하는 위치 정보를 조회 후 이를 시군구별로 평균하여 일별 평균 토양수분값을 산정하였다. 토양수분 기반의 가뭄 현황 분석을 위해 구축된 정밀토양도에서 작물 생장과 관련된 영구위조점 및 포장용수량을 활용해 5단계(정상, 관심, 주의, 경계, 심각)의 가뭄 위험도를 산정하였으며, 실제 가뭄 현황과의 비교를 통해 토양수분기반의 가뭄 위험도의 실효성을 검증하고자 한다.

  • PDF

고해상도 영상기반 농업용 저수지 수혜면적 및 수로 네트워크 구축 (Building the Irrigated Area and Canal Network of Agricultural Reservoir Based on High-Resolution Images)

  • 윤동현;남원호;정인균;배경호;조정호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.29-29
    • /
    • 2021
  • 최근 물 사용에 대한 각 부문 간의 경쟁이 심화되고 있으며, 미래 기후변화에 대응하기 위해 체계적이고 효율적인 수자원 활용이 요구되고 있다. 농업용수는 우리나라 수자원의 40% 이상을 차지하고 있지만, 생활용수, 공업용수와 달리 경험에 기반한 관행적 관리가 이루어지고 있어 체계적인 관리가 필요하다. 농업용수의 체계적 관리와 분석을 위해 최신화된 수혜면적 파악 및 수혜구역 내 수로 네트워크 구축은 필수적 요소이다. 현재 활용하고 있는 농업용 저수지 수혜면적 및 수로 자료는 한국농어촌공사의 RIMS 자료를 기반으로 하고 있다. 하지만 기존 자료의 경우 준공 당시 설계기준으로 작성되거나 수년 전 갱신된 자료로 최신현황을 반영하지 못하고 있다. 이러한 문제점을 보완하기 위해 직접 측량을 통한 자료 취득 또는 농림축산식품부의 스마트팜맵과 같은 대체, 보완자료가 활용되고 있다. 직접 측량의 경우 최신화된 정확한 자료 취득이 가능하지만, 많은 시간이 소요되며, 스마트팜맵의 경우 취득 주기가 1~2년으로 주기에 따라 최신자료의 활용이 어려울 수 있다. 본 연구에서는 자료 산정 시간 단축 및 최신자료 취득을 위해 고해상도 영상을 활용하고자 하였으며, 여주시 삼합저수지를 대상으로 검증하였다. 영상자료로는 위성영상, 항공영상, 드론영상을 활용하였으며, 위성영상의 경우 구글어스 프로의 2020년 11월 고해상도 영상, 국토리지정보원의 2019~2020년 51cm급 항공 영상, 2020년 10월 촬영한 4cm급 드론영상을 사용하였다. 수혜면적 산정은 기존 RIMS 자료와 스마트팜맵을 통해 확인한 수혜면적에서 영상을 통해 확인한 토지이용 변경지역을 추출하여 재산정하였으며, 수로 네트워크의 경우 RIMS 자료를 기반으로 드론영상을 통해 확인된 수로 추가 및 DEM (Digital Elevation Model) 영상을 활용한 용수 흐름도 작성을 통해 구축하였다. 본 연구에서 재산정한 수혜면적과 수로 네트워크는 정확한 용수 수요량 및 공급량 산정, 관개 효율 분석 등과 같은 농업용수 분석 전반에 기초자료로 활용 가능할 것으로 판단된다.

  • PDF

저수지 수혜구역단위 논 전작화 패턴 분석 (Analysis of the agricultural area conversion of paddy to field based on reservoir irrigation region)

  • 박진석;장성주;홍록기;홍주표;송인홍
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.467-467
    • /
    • 2021
  • 기존 저수지 농업용수는 주로 논의 벼재배 용수공급을 목적으로 설계되었지만, 논 지역 타작물 재배 지원 등의 정책으로 논에서 밭으로 전작화가 증가함에 따라 농업용수의 효율적 분배를 위한 논의 전작화 패턴 분석이 필요한 실정이다. 이에 본 연구에서는 공공데이터 포털의 2019년 팜맵을 활용하여 최신 경지 현황을 파악하고, 환경부의 2007년, 2019년 토지피복지도를 이용하여 전작화 패턴을 분석하였다. 구축된 팜맵과 토지피복지도는 환경부 토지피복분류 기준 농업지역 중분류로 일치시켜 분석에 활용되었다. 논, 밭, 시설재배지 등의 농경지 이용 현황 및 전작화 추이는 전국 단위, 권역 단위로 분석되었고, 주요 시도와의 공간적 거리를 전작화 영향인자로 설정하여 DUP(Degree of Urban Proximity) 등의 지표로 그 영향을 확인하였다. 또한, 전체 경지 중 논, 밭의 면적과 증감 추이를 ACR(Area Change Rate) 등의 지표로 전작화 규모를 파악하였고, LPI(Largest Patch Index), LSI(Landscape Shape Index) 등의 지표로 개별/집단화 전작의 패턴분석을 수행하였다. 본 연구로 제시된 저수지 수혜 구역별 논의 전작화 패턴은 논 벼재배와 농업용수 수요 특성이 상이한 밭작물에 안정적 용수공급 체계 구축 등의 기초자료로 활용 가능할 것으로 생각된다.

  • PDF

딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지 (Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages)

  • 윤병현;성선경;최재완
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.183-192
    • /
    • 2023
  • 위성영상 및 항공사진과 같은 원격탐사 자료들은 영상판독과 영상처리 기법을 통하여 영상 내의 객체를 탐지하고 추출하는 데에 사용될 수 있다. 특히, 원격탐사 자료의 해상도가 향상되고, 딥러닝(deep learning) 모델 등과 같은 기술의 발전으로 인하여 관심객체를 자동으로 추출하여 지도갱신 및 지형 모니터링 등에 활용될 수 있는 가능성이 증대되고 있다. 이를 위해, 본 연구에서는 의미론적 분할에 사용되는 대표적인 딥러닝 모델인 fully convolutional densely connected convolutional network (FC-DenseNet)을 기반으로 하여 항공정사영상 내 존재하는 비닐하우스를 추출하고, 이에 대한 결과를 정량적으로 평가하였다. 농림축산식품부의 팜맵(farm map)을 이용하여 담양, 밀양지역의 비닐하우스에 대한 레이블링을 수행하여 훈련자료를 생성하고, 훈련자료를 이용하여 FC-DenseNet의 훈련을 수행하였다. 원격탐사자료에 딥러닝 모델을 효과적으로 이용하기 위하여, 각 밴드별 특성이 유지되도록 instance norm을 이용하여 정규화과정을 수행하였으며, attention module을 추가하여 각 밴드별 가중치를 효과적으로 산정하였다. 실험결과, 딥러닝 모델을 이용하여 영상 내 존재하는 비닐하우스 지역을 효과적으로 추출할 수 있음을 확인하였으며 팜맵, 토지피복지도 등의 갱신에 활용될 수 있을 것으로 판단하였다.

농업환경자원관리를 위한 팜맵 활용전략에 관한 연구 (Farm-map Application Strategy for Agri-Environmental Resources Management)

  • 위성승;이원석;정남수
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, a farm map utilization strategy for sustainable agricultural environmental resource management was derived. In addition, it is intended to present an efficient method of providing farm map-related services. As a result of the demand survey, the additional information required for the farm map includes 29% of information on crops grown on farmland, 21% of management-related information such as the owner or business entity, 17% of topographical information including slope, 15% of agricultural water information, 17% of land status information, and the addition of functions. 2% was investigated. As a result of intensive interview survey, it was found that it can be used for information on crops cultivated by agricultural businesses, actual cultivated area by township, arable land consolidation division boundary, and management of agricultural promotion zones. The farm map can be used as basic data to efficiently manage agricultural environmental resources. Since the status of support for individual farms or lots, such as soil improvement agent support and organic fertilizer support, may belong to personal information, it can be processed and provided in units required by administration or policies, such as administrative boundaries, subwatersheds, and watersheds. It can serve as a basis for executing the direct payment currently supported only by individual farms, even in a community unit that manages environmental direct payments.

훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가 (Performance Evaluation of Deep Learning Model according to the Ratio of Cultivation Area in Training Data)

  • 성선경;최재완
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1007-1014
    • /
    • 2022
  • 차세대중형위성(Compact Advanced Satellite 500, CAS500)은 식생, 산림, 농업 등의 분야를 포함한 다양한 목적을 위하여 사용될 수 있으며, 다양한 영역에 대한 빠른 위성영상의 취득이 가능할 것으로 기대되고 있다. 차세대중형위성을 통하여 취득된 위성영상을 농업분야에서 활용하기 위해서는 위성영상 기반 작물재배지역 추출 기법에 대한 개발이 필요하다. 특히, 최근 들어 딥러닝 분야에 대한 연구가 활발해짐에 따라서, 작물재배지역 추출을 위한 딥러닝 모델의 개발 및 훈련자료 생성에 관한 연구가 필요한 실정이다. 본 연구에서는 PlanetScope 위성영상과 팜맵을 이용하여 합천군 지역의 양파 및 마늘 재배지역을 분류하고자 하였다. 특히, 효과적인 모델의 학습을 위하여 작물재배지역의 비율에 따른 모델 성능을 분석하고자 하였다. 실험에 사용한 딥러닝 모델은 Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet)을 작물재배지역 분류의 목적에 맞도록 재구성하여 활용하였다. 실험결과, 훈련자료 내 작물재배지역의 비율이 딥러닝 모델의 성능에 영향을 미치는 것을 확인하였다.

농업용수 디지털 정보를 활용한 용수공급 네트워크 분석 (Analysis of Water Distribution Network using Digital Data in Agricultural Watershed)

  • 신지현;남원호;윤동현;양미혜;정인균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.510-511
    • /
    • 2022
  • 물관리기본법의 시행 및 제1차 국가물관리기본계획의 이행에 따라 물관리 자료의 정보화 요구가 증가하고 있다. 과거 농업용수관리는 기초자료의 오류, 계측데이터의 부족 등이 한계점으로 지적되었으며, 과학화·표준화된 농업용수 물수급 분석 체계 구축 및 물정보의 정확성이 요구된다. 최근 통합물관리 국가정책 대응을 위한 물수급 분석 기반 마련을 목적으로 한국농어촌공사에서는 농업용수 용 배수 계통 정밀조사, 공간자료 재구축 등을 통한 농업용수 디지털 정보체계 구축 사업이 진행되고 있다. 연속수치지형도 및 토지피복, 스마트팜맵 등의 디지털 공간자료를 수집하고 현장조사와 영농조사를 바탕으로 최신화된 용배수계통도, 수혜면적 자료를 구축하였다. 본 연구에서는 디지털화한 용배수계통도를 이용하여 수리해석 모델 기초자료를 구축하고, 들녘단위 (주·보조수원, 저수지 및 양수장 등) 용수계통도 구현함으로써 수원공별 용수공급 네트워크를 분석하고자 한다. 농업용수 공급체계 반영이 가능한 EPA-SWMM (United States Environmental Protection Agency Storm Water Management Model)을 활용하여 다양한 물공급 시나리오를 적용하여 최적의 물관리 방안을 제시하고자 한다. 본 연구에서는 경기도 안성시 고삼저수지를 대상으로 연속수치지형도, 농경지전자지도, 고해상도 DEM 등을 활용한 디지털 조사와 수로 표고, 길이 및 너비 등 현장조사를 수행하였으며, 현장 물관리 방안을 적용하여 물분배 모의가 가능한 EPA-SWMM 기반 수원공-용수로-수혜구역을 연결하는 용수공급 네트워크를 구축하였다. 농촌용수종합정보시스템 (Rural Agricultural Water Resource Information System, RAWRIS)에서 제공하는 계측 자료를 활용하여 관개기간의 강수량, 소비수량, 증발산량, 공급량 등을 적용하여 농업용수 공급량, 배분량을 추정하였다. 본 연구의 결과는 물관리 담당자에게 상세한 현행 용수공급량 및 용수공급체계 정보 제공과 향후 국가물관리기본계획, 농어촌용수이용합리화계획의 물수급 분석 기초자료로 활용 가능할 것으로 사료된다.

  • PDF

무인기 영상 기반 옥수수 재배필지 추출을 위한 Attention U-NET 적용 및 평가 (Application and Evaluation of the Attention U-Net Using UAV Imagery for Corn Cultivation Field Extraction)

  • 신형섭;송석호;이동호;박종화
    • Ecology and Resilient Infrastructure
    • /
    • 제8권4호
    • /
    • pp.253-265
    • /
    • 2021
  • 본 연구에서는 위성영상 촬영 한계를 극복하고 재배 필지 현황 파악 기술 발전에 기여하고자 무인기 영상 및 딥러닝 모형을 이용하여 옥수수 재배 필지 추출 방법을 제안하였다. 연구대상지역은 충북 괴산군 감물면 이담리 일대로 설정하고, 무인기 촬영을 통해 해당지역의 정사영상을 취득하였다. 모형에 필요한 학습자료는 현장조사 자료와 팜맵을 이용하여 구축하였다. 본 연구에 적용한 딥러닝 모형은 의미론적 분할 모형인 Attention U-Net을 이용하였다. 모형의 성능 평가는 학습과정을 거친 후 비학습 자료를 이용하여 옥수수 재배 필지 추출에 대해서 실시 하였다. 모형 성능평가 결과 정밀도는 0.94, 재현율은 0.96 및 F1-Score는 0.92로 나타났다. 본 연구에 적용한 Attention U-Net방법은 옥수수 재배 필지를 효과적으로 추출할 수 있는 방법임을 확인하였다. 따라서 본 연구 방법은 옥수수는 물론 다른 작물에 대한 재배 필지 구분에도 유용하게 활용될 수 있을 것으로 기대된다.

Sentinel-1 및 UAV 영상을 활용한 김제시 벼 재배 조기 추정 (Early Estimation of Rice Cultivation in Gimje-si Using Sentinel-1 and UAV Imagery)

  • 이경도;김숙경;안호용;소규호;나상일
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.503-514
    • /
    • 2021
  • 쌀 수급 조절 정책의 합리적 수립을 지원하기 위해서는 벼 재배면적의 조기 추정이 필요하다. 본 연구는 국내 벼 주산지인 김제시를 대상으로 Sentinel-1 위성영상을 활용하여 이앙이 마무리되는 7월 초순 벼 재배면적을 조기에 추정하기 위해 최적의 훈련자료 수집을 위한 무인기(UAV) 영상 활용 방안을 제시하고자 수행하였다. 5월부터 7월 초까지 수집한 Sentinel-1 위성영상은 ESA에서 제공하는 SNAP(SeNtinel application platform, Version 8.0)프로그램으로 전처리하고 팜맵을 활용하여 농경지만을 추출하였다. 벼 재배지 중심 지역과 벼·콩 혼재지 무인기 영상 촬영 영역을 혼합하여 훈련자료로 선정하여 김제시 전체 벼 재배지를 추정한 결과, 정확도와 카파 계수는 각각 89.9%, 0.774로 가장 좋은 결과를 보였는데, 이는 김제시 전역을 대상으로 무작위 표본조사를 수행하여 분류한 결과와 비교 시 전체 정확도 1% 내외, 카파 계수 0.02~0.04 범위에서 차이를 보여 벼 재배지 조기 추정을 위한 무인기 영상 활용 가능성을 확인할 수 있었다.