• Title/Summary/Keyword: 파 스펙트럼

Search Result 571, Processing Time 0.025 seconds

A Study on Roll Motion in Waves of Capsized Small Vessel Based on Loading Condition (전복사고 발생 소형선박의 적재상태를 고려한 파랑중 횡동요 연구)

  • KIM, Sung-Uk;KIM, In-Seob;SONG, Mi-Kyoung;LEE, Gun-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1031-1037
    • /
    • 2021
  • The frequency of marine accidents of vessels in Korea is steadily increasing and it is concentrated on small vessels with less than 10 tons of gross tonnage. Therefore, preventing capsizing accidents in small vessels is important to reduce the cost in terms of human and property damage due to such accidents. However, research on the seakeeping performance of small vessels has been insufficient, and there are no domestic and international regulations on seakeeping performance. Therefore, in this study, capsizing accidents caused by poor loading conditions were investigated by examining the adjudications of the small vessels in which the capsizing accidents occurred. Hydrostatic calculations and seakeeping performance analysis were performed for a representative vessel. A vessel generally performs a six-degree-of-freedom motion during operation. In this study, the response amplitude operator and response spectrum of a representative vessel were calculated to determine the roll motion. Moreover, a short-term statistical analysis of the vessel according to the loading conditions was performed for the wave stationary status for 3 h. From the results, it was estimated that, when the loading condition of a small vessel is poor, its roll motion increases, greatly reducing its stability.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

Classification of Seismic Stations Based on the Simultaneous Inversion Result of the Ground-motion Model Parameters (지진동모델 파라미터 동시역산을 이용한 지진관측소 분류)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 2007
  • The site effects of seismic stations were evaluated by conducting a simultaneous inversion of the stochastic point-source ground-motion model (STGM model; Boore, 2003) parameters based on the accumulated dataset of horizontal shear-wave Fourier spectra. A model parameter $K_0$ and frequency-dependent site amplification function A(f) were used to express the site effects. Once after a H/V ratio of the Fourier spectra was used as an initial estimate of A(f) for the inversion, the final A(f) which is considered to be the result of combined effect of the crustal amplification and loca lsite effects was calculated by averaging the log residuals at the site from the inversion and adding the mean log residual to the H/V ratio. The seismic stations were classified into five classes according to $logA_{1-10}^{max}$(f), the maximum level of the site amplification function in the range of 1 Hz < f < 10 Hz, i.e., A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ $logA_{1-10}^{max}$(f) < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f). Implication of the classified result was supported by observing a shift of the dominant frequency of average A(f) for each classified stations as the class changes. Change of site classes after moving seismic stations to a better site condition was successfully described by the result of the station classification. In addition, the observed PGA (Peak Ground Acceleration)-values for two recent moderate earthquakes were well classified according to the proposed station classes.

The effect of Neurofeedback training on brain wave activity and cognitive performance in chronic stroke patients (뉴로피드백(Neurofeedback) 훈련이 만성 뇌졸중 환자의 뇌파활성도와 인지수행력에 미치는 효과)

  • Lee, Young-Sin;Kim, Sang-Yeob;Kim, Chan-Kyu;Jung, Dae-In;Kim, Kyung-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2329-2337
    • /
    • 2013
  • This study was done objected to the chronic stroke patients in order to evaluate change in brain wave activity and cognitive performance when Neurofeedback training. The subjects were over 6 months ago in chronic stroke patients screened-test through the 20 patients, 10 persons in each group were randomly placed. This was carried out in 4 weeks in total, with control group(n=10) on general physical therapy and experimental group(n=10) on general physical therapy along with Neurofeedback training. The general physical therapy was applied 5 times a week, 30 minutes at once, Neurofeedback training was applied as equally as the general physical therapy, which makes 20 times in total. To learn about the effect before the training, after training, and 2 weeks after the training in electric physiological measurement method of the brain, electroencephalogram(EEG) to examine challenges by calculating the absolute spectrum power for standard EEG change(%), followed by evaluation with clinical assessment tool MMSE-K, Stroop Test, Digit Span Test. As a result of comparing the change in brain wave through EEG, after training and 2 weeks after training showed that absolute ${\alpha}$-power and absolute ${\beta}$-SMR power of experimental group have increased and absolute ${\theta}$-power decreased significantly compared to experimental group I. Moreover, the MMSE-K score in trial appraisal has increased significantly, and the error in Stroop Test and Digit Span Test has decreased significantly. such results, with the chronic stroke patient's brain wave control, Neurofeedback training was determined to improve the cognitive performance. this study suggests a new training possibility of stroke patients by identifying the training effects of Neurofeedback training that trains the brain directly with brain wave control.

Clinical Application of Compressed Spectral Array During Deep Hypothermia (초저체온하 대동맥수술 환자에서 완전 순환차단의 안전한 체온 및 기간에 대한 연구 - 뇌파 Compressed Spectral Array의 임상적 응용 -)

  • 장병철;유선국
    • Journal of Chest Surgery
    • /
    • v.30 no.8
    • /
    • pp.752-759
    • /
    • 1997
  • Profound hypothermia protects . cerebral function during total circulatory arrest(TCA) in the surgical treatment of a variety of cardiac and aortic diseases. Despite its importance, there is no ideal technique to monitor the brain injury from ischemia. Since 1994, we have developed compressed spectral array(CSA) of electroencephalography(EEG) and monitored cerebral activity to reduce ischemic injury. The purposes of this study are to analyse the efficacy of CSA and to establish objective criteria to consistently identify the safe level of temperature and arrest time. We studied 6 patients with aortic dissection(AD, n=3) or aortic arch aneurysm(n=3, ruptured in 2). Body temperatures from rectum and esophagus and the EEG were monitored continuously during cooling and rewarming period. TCA with cerebral ischemia was performed in 3 patients and TCA with selective cerebral perfusion was performed in 3 patients. Total ischemic time was 30, 36 and 56 minutes respectively for TCA group and selective perfusion time was 41, 56 and 92 minutes respectively for selective perfusion group. The rectal temperatures for flat EEG were between 16.1 and 22. $1^{\circ}C$ (mean: 18.4 $\pm$ 2.0): the esophageal temperatures between 12.7 and $16.4^{\circ}C$ (mean $14.7\pm1.6).$ The temperatures at which EEG reappeared $5~15.4^{\circ}C$ for esophagus. There was no neurological defic t and no surgical mortality in this series. In summary, the electrical cerebral activity Teappeared within 23 minutes at the temperature less than $16^{\circ}C$ for rectum. It seemed that $15^{\circ}C$ of esophageal temperature was not safe for 20 minutes of TCA and continuous monitoring the EEG with CSA to identify the electrocerebral silence was useful.

  • PDF

The Site Effect of the Broadband Seismic Stations in Korea (국내 광대역 지진 관측소의 부지효과)

  • Wee, Soung-Hoon;Kim, Sung-Kyun
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.225-242
    • /
    • 2008
  • The site effect for 23 broadband seismic stations in the southern Korean Peninsula was estimated by using the spectral ratio of coda waves. In principle, the site effect means the pure amplification below the station excluding effects of seismic source and attenuation in the wave transmission. However, the site effect determined in this study is equivalent with the relative site amplification factor to the mean amplification for all stations. A total of 500 three-component seismograms from 35 earthquakes, of which magnitude ranged from 2.5 to 5.1 occurred from January, 2001 to January, 2007 was used to obtain the site amplification factor. The site amplification factors were estimated for the frequency bands centered at 0.2, 0.5, 1, 2, 5, 10, 15, and 20 Hz. It was found that the factors for two horizontal components of transverse and radial records were concordant with each other in the all frequency bands. However, the factor for the vertical component was found to be systematically lower than those for two horizontal components. The factors obtained in the low frequency band below 2 Hz ranged from 0.5 to 1.5 in all seismic stations except for KMA and KIGAM stations in Bagryeongdo (BRD1 and BRD2) of which factor showed high value above 1.5. Some stations such as SEO, SNU, HKU, NPR, and GKPI showed high value above 1.5 in the high frequency band from 5 to 20 Hz. Especially, the factors of GKP1 station represented extremely high value ranging from 1.8 to 7.8. Also, the factors for stations of KWJ, SND, and ULJ showed low value below 0.5. The spatial distribution for the relative amplification factor represented a tendency of being approximately lower in north-eastern area than south-western area in the southern Korean Peninsula.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

Heart Rate Variability and Parenting Stress Index in Children with Attention-Deficit/Hyperactivity Disorder (주의력결핍 과잉행동장애 아동에서의 심박 변이도와 양육 스트레스)

  • Kim, Soo-Young;Lee, Moon-Soo;Yang, Jae-Won;Jung, In-Kwa
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2011
  • Objective:The aim of this study was to evaluate the relationship between sustained attention deficits in Attention-Deficit/Hyperactivity Disorder(ADHD) children and short-term Heart Rate Variability(HRV) parameters. In addition, we evaluate the relationship between The ADHD rating scale(ARS), the computerized ADHD diagnostic system(ADS) and Parenting stress index- short form(PSI-SF). Methods:This study was performed in the department of children and Adolescent psychiatry, Korea university Guro hospital from august 2008 to January 2009. We evaluated HRV parameters by short-term recordings of 5 minutes. K-ARS and ADS are used for screening and identifying ADHD children. Intelligence was measured using Korean educational Developmental Institute-wechsler Intelligence Scale for Children. The caregivers Complete Parenting Stress Index scale for evaluation parent stress. Results:The low frequency(LF) was significantly correlated with response variability of ADS. However, the other variables of ARS and ADS were not significantly correlated with LF. Hyperactivity subscale of ARS was significantly correlated with parental distress subscale and difficult child subscale of PSI-SF and inattention subscale of ARS was also significantly correlated with dysfunctional interaction and difficult child subscale of PSI-SF. Conclusion:The LF, 0.10-Hz component of HRV is known to measure effort allocation. This study shows that the LF component of HRV is significantly correlated with the response variability of ADS. This means that more severe symptoms of ADHD were correlated with the increase in the LF that means decreased effort allocation. These results also support the clinical usability of HRV in the assessment of ADHD. Furthermore, PSI-SF is correlated with hyperactivity and inattention variables of ARS.

  • PDF

Temporal and Spatial Characteristics of Surface Winds over the Adjacent Seas of the Korean Peninsula (한국 주변해역에서의 해상풍의 시공간적 특성)

  • Han, Sang-Kyu;Lee, Heung-Jae;Na, Jung-Yul
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.550-564
    • /
    • 1995
  • The temporal and spatial characteristics of wind fields over the neighbouring seas of the Korean peninsula are investigated using 10-years daily wind data during 1978${\sim}$1987 which have been spatially smoothed and low-pass filtered. Long term annual and monthly means are examined for synoptic patterns and spectral analyses are made for temporal variability and spatial coherence. Spatial patterns of the annual mean wind stress and curl have a strong resemblance with those of monthly means during the winter season. Two outstanding periodicities are observed at 1 and 2 cycles per year. The synoptic winds over the study area are highly coherent at both the annual and semi-annual periodicities. However, each basin has its own characteristic spatial pattern. For instance, the prevailing wind during the winter season is northerIy over the northern East Sea (ES), Yellow Sea (YS), and northern East China Sea (ECS), while it is northwesterly over the southern ES and northesterly over the northern ES and southern ECS. At the same time, the wind stress curl is positive over the northern ES and southern ECS, while it is negative over the southern ES, YS and northern ECS. On the other hand, the wind field during the summer season, with its strength being much reduced, is completely different from that during the winter season, and frequent passage of tropical storms provokes large temporal variability over ECS. One remarkable point is that the annual cycle, dominated by the Siberian High, tends to propagate from northeast to southwest, i.e., from northern 25 toward southern ES, YS and ECS, while the semi-annual cycle propagates in the opposite direction, from southwest to northeast. The semi-annual periodicity may reflect development of extratropical cyclones in spring and fall which frequently cross the Korean peninsula. In higher frequencies, there are no dominant periodicities, but local winds over YS and ES are highly correlated for frequencies larger than 0.1 cycles per day and phase difference increases linearly with frequency. This linear increase of phase corresponds to phase speed of 550 and 730 km/d at 0.1 and 0.3 cpd, respectively, The phase speed is apparently coincident with moving speed of extratropical cyclones across the Korean peninsula in the west-east direction.

  • PDF

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.