• Title/Summary/Keyword: 파찌딴 광화대

Search Result 1, Processing Time 0.057 seconds

Stable Isotopes of Ore Bodies in the Pacitan Mineralized District, Indonesia (인도네시아 파찌딴 광화대 함 금속 광체의 안정동위원소 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Extensive base-metal and/or gold bearing ore mineralizations occur in the Pacitan mineralized district of the south western portions in the East Java, Indonesia. Metallic ore bodies in the Pacitan mineralized district are classified into two major types: 1) skarn type replacement ore bodies, 2) fissure filling hydrothermal ore bodies. Skarn type replacement ore bodies are developed typically along bedding planes of limestone as wall rock around the quartz porphyry and are composed mineralogically of skarn minerals, magnetite, and base metal sulfides. Hydrothermal ore bodies differ mineralogically in relation to distance from the quartz porphyry as source igneous rock. Hydrothermal ore bodies in the district are porphyry style Cu-Zn-bearing stockworks as proximal ore mineralization and Pb-Zn(-Au)-bearing fissure filling hydrothermal veins as distal ore mineralization. Sulfur isotope compositions in the sulfides from skarn and hydrothermal ore bodies range from 6.7 to 8.2‰ and from 0.1 to 7.9‰, respectively. The calculated ${\delta}^{34}S$ values of $H_2S$ in skarn-forming and hydrothermal fluids are 0.9 to 7.1‰ (5.6-7.1‰ for skarn-hosted sulfides and 0.9-6.8‰ for sulfides from hydrothermal deposits). The change from skarn to hydrothermal mineralization would have resulted in increased $SO_4/H_2S$ ratios and corresponding decreases in ${\delta}^{34}S$ values of $H_2S$. The calculated ${\delta}^{18}O$ water values are: skarn magnetite, 9.6 and 9.7‰; skarn quartz, 6.3-9.6‰; skarn calcite, 4.7 and 5.8‰; stockwork quartz, 3.0-7.7‰; stockwork calcite, 1.2 and 2.0‰; vein quartz, -3.9 - 6.7‰. The calculated ${\delta}^{18}O_{water}$ values decrease progressively with variety of deposit types (from skarn through stockwork to vein), increasing paragenetic time and decreasing temperature. This indicates the progressively increasing involvement of isotopically less-evolved meteoric waters in the Pacitan hydrothermal system. The ranges of ${\delta}D_{water}$ values are from -65 to -88‰: skarn, -67 to -84‰; stockwork, -65 and -76‰; vein, -66 to -88‰. The isotopic compositions of fluids in the Pacitan hydrothermal system show a progressive shift from magmatic hydrothermal dominance in the skarn and early hydrothermal ore mineralization periods toward meteoric hydrothermal dominance in the late ore mineralization periods.