• Title/Summary/Keyword: 파이프 지지구조

Search Result 15, Processing Time 0.019 seconds

A Study on the Application of Composites to Pipe Support Clamps for the Light-weight LNGC (LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구)

  • Bae, Kyong-Min;Yim, Yoon-Ji;Yoon, Sung-Won;Ha, Jong-Rok;Cho, Je-Hyoung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • In the shipbuilding and marine industry, as a technology for reducing the weight of parts to reduce energy and improve operational efficiency of ships is required, a method of applying fibers-reinforced composites which is high-strength lightweight materials, as part materials can be considered. In this study, the possibility of applying fibers-reinforced composites to the pipe support clamps was evaluated to reduce the weight of LNGC. The fibers-reinforced composites were manufactured using carbon fibers and glass fibers as reinforcing fibers. Through the computer simulation program, the properties of the reinforcing materials and the matrix materials of the composites were inversely calculated, and the performance prediction was performed according to the change in the properties of each fiber lamination pattern. In addition, the structural analysis of the clamps according to the thickness of the composites was performed through the finite element analysis program. As a result of the study, it was confirmed that attention is needed in selecting the thickness when applying the fibers-reinforced composites of the clamp for weight reduction. It is considered that it will be easy to change the shape of the structure and change the structure for weight reduction in future supplementary design.

Structural Analysis of Cheju-style Plastic Greenhouse Model for Crop Growing Based on the Wind Load (풍하중을 고려한 제주형 작물재배용 비닐하우스모델의 구조해석)

  • 민창식;김용호;권기린
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • An elastic analysis under wind load was performed for the double layered plastic greenhouse model developed particularly for minimizing damages under typhoons at Cheju Citrus Research institute in Seagipo city. General EVA film was used for the inner covering and the developed special film which would break the wind pressure down was used for the outer covering. The wind tunnel test showed this special film reduced the wind speed up to 86 to 98% under well controlled situation. Based on the elastic analysis performed in the study, the behavior of the greenhouse was changed significantly due to the boundary conditions. Not like other researchers before we applied dead load of the concrete support to the ground pipe and fixed support boundary conditions at the 4 corner pipes. The analysis shows that the greenhouse was lifted and pulled the pipe out of the ground due to the sucking wind pressure. The behavior of the greenhouse was quite similar to that one real greenhouse failure. Therefore, not only we need to find the realistic boundary conditions for the supports, but also need to find how to rest the pipe supports on the ground without economic loss.

  • PDF

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.

Anatomy and Histology of the Olfactory Organ of Asian Swamp Eel Monopterus albus (드렁허리 Monopterus albus 후각기관의 해부 및 조직학적 특성 연구)

  • Hyun-Tae Kim
    • Korean Journal of Ichthyology
    • /
    • v.36 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The anatomy and histology of the olfactory organ of Monopterus albus was investigated using stereo microscopy, light microscopy, and scanning electron microscopy. The external structure of the olfactory organ exhibited closed anterior and posterior nostrils parallel to the skin surface. The interior structure consisted of a pipe-like chamber, and lower and upper accessory nasal sacs. The olfactory chamber was composed of the sensory and non-sensory epithelium, and an unidentified organ. The sensory epithelium of the pseudostratified epithelial layer was composed of olfactory receptor neurons, supporting cells, basal cells, and lymphatic cells; and the non-sensory epithelium of the stratified squamous layer contained stratified epithelial cells and mucous cells with acidic mucopolysaccharides. The presence of intraepithelial blood capillaries and abundant dermal vascularization in the sensory epithelium of the olfactory chamber may provide strong histological evidence that respiration occurs through the olfactory epithelium.

A Study of Measuring Vibration for Reproducing Waterhammer of Plant Equipment (플랜트 기자재 수충격 진동재현을 위한 진동측정에 관한 연구)

  • OH, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.145-150
    • /
    • 2017
  • In this study, among the various types of plant equipment, valves, which are susceptible to water hammer, were selected as the diagnosis target. In order to effectively measure the vibration, an accelerometer was adapted for use in this difficult environment. The results showed that the maximum peak-to-peak vibration displacement caused by the action of water hammer on the valve was 21.40 mm, which would affect the structural stability of the valve and pipe. Meanwhile, the measured data was applied to the HIL simulator to verify the reproduction of the vibration. In the future, field data will be applied to the HIL simulator for the purpose of assessing the fatigue, durability and expected residual life of the plant equipment.