Journal of the Korea Institute of Information Security & Cryptology
/
v.12
no.2
/
pp.21-34
/
2002
In this paper we propos a new hardware architecture of modular exponentiation using a division chain method which has been proposed in (2). Modular exponentiation using the division chain is performed by receding an exponent E as a mixed form of multiplication and addition with divisors d=2 or $d=2^I +1$ and respective remainders r. This calculates the modular exponentiation in about $1.4log_2$E multiplications on average which is much less iterations than $2log_2$E of conventional Binary Method. We designed a linear systolic array multiplier with pipelining and used a horizontal projection on its data dependence graph. So, for k-bit key, two k-bit data frames can be inputted simultaneously and two modular multipliers, each consisting of k/2+3 PE(Processing Element)s, can operate in parallel to accomplish 100% throughput. We propose a new encoding scheme to represent divisors and remainders of the division chain to keep regularity of the data path. When it is synthesized to ASIC using Samsung 0.5 um CMOS standard cell library, the critical path delay is 4.24ns, and resulting performance is estimated to be abort 140 Kbps for a 1024-bit data frame at 200Mhz clock In decryption process, the speed can be enhanced to 560kbps by using CRT(Chinese Remainder Theorem). Futhermore, to satisfy real time requirements we can choose small public exponent E, such as 3,17 or $2^{16} +1$, in encryption and verification process. in which case the performance can reach 7.3Mbps.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.2
/
pp.63-70
/
2022
Although 2D Object detection has been largely improved in the past years with the advance of deep learning methods and the use of large labeled image datasets, 3D object detection from 2D imagery is a challenging problem in a variety of applications such as robotics, due to the lack of data and diversity of appearances and shapes of objects within a category. Google has just announced the launch of Objectron that has a novel data pipeline using mobile augmented reality session data. However, it also is corresponding to 2D-driven 3D object detection technique. This study explores more mature 2D object detection method, and applies its 2D projection to Objectron 3D lifting system. Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a stochastic representation of object regions using Gaussian distributions. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a stochastic Intersection-over-Union. Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in available datasets. Thus, less accuracy problem that is one of several limitations of Objectron can be relaxed.
Journal of the Korea Society of Computer and Information
/
v.27
no.7
/
pp.1-7
/
2022
Recently, as the use of applications such as big data programs and machine learning programs that are driven while generating large amounts of data in the program itself becomes common, the existing main memory alone lacks memory, making it difficult to execute the program quickly. In particular, the need to derive results more quickly has emerged in a situation where it is necessary to analyze whether the entire sequence is genetically altered due to the outbreak of the coronavirus. As a result of measuring performance by applying large-capacity data to a computing system equipped with a self-developed memory pool MOCA host adapter instead of processing large-capacity data from an existing SSD, performance improved by 16% compared to the existing SSD system. In addition, in various other benchmark tests, IO performance was 92.8%, 80.6%, and 32.8% faster than SSD in computing systems equipped with memory pool MOCA host adapters such as SortSampleBam, ApplyBQSR, and GatherBamFiles by task of workflow. When analyzing large amounts of data, such as electrical dielectric pipeline analysis, it is judged that the measurement delay occurring at runtime can be reduced in the computing system equipped with the memory pool MOCA host adapter developed in this research.
Immersive content overcomes spatial limitations through convergence with extended reality, artificial intelligence, and photogrammetry technology along with interest due to the COVID-19 pandemic, presenting a new paradigm in the content market such as entertainment, media, performances, and exhibitions. However, it can be seen that in order for realistic content to have sustained public interest, it is necessary to study storytelling method that can increase immersion in content rather than technological freshness. Therefore, in this study, we propose a immersive content storytelling method using artificial intelligence and photogrammetry technology. The proposed storytelling method is to create a content story through interaction between interactive virtual beings and participants. In this way, participation can increase content immersion. This study is expected to help content creators in the accelerating immersive content market with a storytelling methodology through virtual existence that utilizes artificial intelligence technology proposed to content creators to help in efficient content creation. In addition, I think that it will contribute to the establishment of a immersive content production pipeline using artificial intelligence and photogrammetry technology in content production.
Kim, Hyun Suk;Ko, Dong Beom;Lee, Won Gok;Bae, You Suk
KIPS Transactions on Software and Data Engineering
/
v.11
no.5
/
pp.211-220
/
2022
Recently, research on smart factories triggered by the 4th industrial revolution is being actively conducted. Accordingly, the manufacturing industry is conducting various studies to improve productivity and quality based on deep learning technology with robust performance. This paper is a study on the method of detecting tire surface defects in the visual inspection stage of the tire manufacturing process, and introduces a tire surface defect detection method using a depth image acquired through a 3D camera. The tire surface depth image dealt with in this study has the problem of low contrast caused by the shallow depth of the tire surface and the difference in the reference depth value due to the data acquisition environment. And due to the nature of the manufacturing industry, algorithms with performance that can be processed in real time along with detection performance is required. Therefore, in this paper, we studied a method to normalize the depth image through relatively simple methods so that the tire surface defect detection algorithm does not consist of a complex algorithm pipeline. and conducted a comparative experiment between the general normalization method and the normalization method suggested in this paper using YOLO V3, which could satisfy both detection performance and speed. As a result of the experiment, it is confirmed that the normalization method proposed in this paper improved performance by about 7% based on mAP 0.5, and the method proposed in this paper is effective.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.5
/
pp.1019-1034
/
2022
Malware attacks become more prevalent in the hyper-connected society of the 4th industrial revolution. To respond to such malware, automation of malware detection using artificial intelligence technology is attracting attention as a new alternative. However, using artificial intelligence without collateral for its reliability poses greater risks and side effects. The EU and the United States are seeking ways to secure the reliability of artificial intelligence, and the government announced a reliable strategy for realizing artificial intelligence in 2021. The government's AI reliability has five attributes: Safety, Explainability, Transparency, Robustness and Fairness. We develop four elements of safety, explainable, transparent, and fairness, excluding robustness in the malware detection model. In particular, we demonstrated stable generalization performance, which is model accuracy, through the verification of external agencies, and developed focusing on explainability including transparency. The artificial intelligence model, of which learning is determined by changing data, requires life cycle management. As a result, demand for the MLops framework is increasing, which integrates data, model development, and service operations. EXE-executable malware and documented malware response services become data collector as well as service operation at the same time, and connect with data pipelines which obtain information for labeling and purification through external APIs. We have facilitated other security service associations or infrastructure scaling using cloud SaaS and standard APIs.
KIPS Transactions on Software and Data Engineering
/
v.12
no.10
/
pp.461-470
/
2023
While speech animation generation employing deep learning has been actively researched for English, there has been no prior work for Korean. Given the fact, this paper for the very first time employs supervised deep learning to generate Korean speech animation. By doing so, we find out the significant effect of deep learning being able to make speech animation research come down to speech recognition research which is the predominating technique. Also, we study the way to make best use of the effect for Korean speech animation generation. The effect can contribute to efficiently and efficaciously revitalizing the recently inactive Korean speech animation research, by clarifying the top priority research target. This paper performs this process: (i) it chooses blendshape animation technique, (ii) implements the deep-learning model in the master-servant pipeline of the automatic speech recognition (ASR) module and the facial action coding (FAC) module, (iii) makes Korean speech facial motion capture dataset, (iv) prepares two comparison deep learning models (one model adopts the English ASR module, the other model adopts the Korean ASR module, however both models adopt the same basic structure for their FAC modules), and (v) train the FAC modules of both models dependently on their ASR modules. The user study demonstrates that the model which adopts the Korean ASR module and dependently trains its FAC module (getting 4.2/5.0 points) generates decisively much more natural Korean speech animations than the model which adopts the English ASR module and dependently trains its FAC module (getting 2.7/5.0 points). The result confirms the aforementioned effect showing that the quality of the Korean speech animation comes down to the accuracy of Korean ASR.
There have been many studies to improve the efficiency of the CG production process, but it was not easy to overcome the problem that it was difficult to check the result in the middle of work and it took a lot of time for rendering. However, as the possibility of using Unreal Live Link, which can check the result in real-time, is increasing, expectations for improving the efficiency of the production process are rising. This study analyzed the efficiency of the 3D animation production process using Unreal Live Link. To this end, modeling, rigging, animation, and layout work were done in Maya, and the final output image sequence was rendered in Unreal Engine through Unreal Live Link. And the difference between this production process and the existing production process in which the final output image sequence is rendered in the 3D software itself was compared and analyzed. As a result of the analysis, unlike the traditional 3D animation production process, it was possible to check the final work result in real-time by proceeding with the work through a high-quality viewport screen, and it was found that the efficiency of work was maximized by deriving the final result through real-time screen capture. Recently, the use of game engines in the 3D animation and film industry is gradually increasing, and the efficiency of work is expected to be maximized if Unreal Live Link is used.
Mingyu Jeong;Jeonghyun Noh;Janghyun Kim;Seongheon Ha;Taeseon Kang;Byounghak Lee;Kiryong Kang;Junhyeon Kim;Jinsun Park
Smart Media Journal
/
v.13
no.2
/
pp.52-61
/
2024
In the shipyard, aerial images are acquired at regular intervals using Unmanned Aerial Vehicles (UAVs) for the management of external storage yards. These images are then investigated by humans to manage the status of the storage yards. This method requires a significant amount of time and manpower especially for large areas. In this paper, we propose an automated management technology based on a semantic segmentation foundation model to address these challenges and accurately assess the status of external storage yards. In addition, as there is insufficient publicly available dataset for external storage yards, we collected a small-scale dataset for external storage yards objects and equipment. Using this dataset, we fine-tune an object detector and extract initial object candidates. They are utilized as prompts for the Segment Anything Model(SAM) to obtain precise semantic segmentation results. Furthermore, to facilitate continuous storage yards dataset collection, we propose a training data generation pipeline using SAM. Our proposed method has achieved 4.00%p higher performance compared to those of previous semantic segmentation methods on average. Specifically, our method has achieved 5.08% higher performance than that of SegFormer.
This study aimed to provide a solution for improving ship collision alert of the 'accident vulnerable ship monitoring service' among the 'intelligent marine traffic information system' services of the Ministry of Oceans and Fisheries. The current ship collision alert uses a supervised learning (SL) model with survey labels based on large ship-oriented data and its operators. Consequently, the small ship data and the operator's opinion are not reflected in the current collision-supervised learning model, and the effect is insufficient because the alarm is provided from a longer distance than the small ship operator feels. In addition, the supervised learning (SL) method requires a large number of labeled data, and the labeling process requires a lot of resources and time. To overcome these limitations, in this paper, the classification model of collision alerts for small ships using unlabeled data with the semi-supervised learning (SSL) algorithms (Label Propagation and TabNet) was studied. Results of real-time experiments on small ship operators using the classification model of collision alerts showed that the satisfaction of operators increased.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.