• Title/Summary/Keyword: 파워트레인 샤프트

Search Result 5, Processing Time 0.019 seconds

A Study on the CAE Analysis of Bed of Multi-Tasking Machine for Automotive Power Train Shafts (자동차 파워트레인 샤프트 가공용 8축 복합가공기 베드의 유한요소 해석에 관한 연구)

  • Cho, Jun-Hyun;Moon, Dong-Ju;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • To build a high precision machine tool and increase its productivity, structural analysis needs to be carried out for vibration and stiffness of the machine tools before any detailed design. Therefore, in this paper, static and dynamic analysis is carried out to evaluate 8-axis multi tasking machining beds for automotive power train shafts; then, selection of an appropriate device is made for application to bed design. The results of structural and modal analysis confirmed the structural characteristics of the 8-axis multi tasking machine for automotive power train shaft beds: and the second shape bed is the safest is considered secure.

High-Stiffness Structure Design of 8-Axis Multi-tasking Machine for Automotive Powertrain Shafts (자동차 파워 트레인 샤프트 가공용 8축 복합가공기의 고 강성 구조설계에 관한 연구)

  • Moon, Dong-Ju;Cho, Jun-Hyun;Choi, Yun-Seo;Hwang, In-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • The development of an exclusive 8-axis multi-tasking machine to finish multiple cutting processes by a single piece of power equipment for securing the high-precision machining and high productivity of the series of shafts (a core part of the automotive powertrain that delivers engine power) is needed. The rigidity of the structure must be improved and the weight of the structure must be reduced to develop a multi-tasking machine with high precision and high productivity. In this paper, we perform a static structural analysis of the initial design of the multi-tasking machines and compare the results of the multi-tasking machines improved by the reinforced design and the results of the initial one. According to the results of the structural analysis, the rigidity of the reinforced machine was increased and the overall weight was decreased. Therefore, the productivity was increased.

Analysis of Mount Reaction Forces for Powertrain Mounting Systems using Nonlinear Characteristics (비선형 특성을 적용한 파워트레인 마운팅 시스템의 마운트 전달력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • The primary objective of this study is to truly understand reaction force be due to engine exciting force. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand reaction force was applied MSC.Nastran software. Analyzed frequency response analysis of powertrain mount system. First, engine exciting force was applied field function. Also nonlinear characteristics was applied field function : such as dynamic spring constant and loss factor. And nonlinear characteristics was applied CBUSH. Generally characteristics of rubber mount is constant frequency. But characteristics of hydraulic mount depend to frequency. Therefore nonlinear characteristics was applied. Powertrain mounting system be influenced by powertrain specification, mount position, mount angle and mount characteristics etc. In this study, we was analyzed effects of powertrain mounting system. And we was varied dynamics spring constant and loss factor of mounts.

  • PDF

Analysis of Exciting Forces for In-Line 4 Cylinders Engine (직렬 4기통 엔진의 가진력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

Noise Reduction of Electric Vehicle using Passive Damping Material (수동형 패치를 이용한 전기차 소음 저감)

  • Kim, Hyunsu;Kim, Byeongil;Han, Won-ok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.117-122
    • /
    • 2017
  • Cabin noise due to the electric powertrain of electrical vehicle may consists of motor noise caused by electrical mismatch and gear noise coming from reduction gearbox. These sound may be considered rather small noise compared to those of internal combustion engine, but without masking effect, the noise can be more annoying for customer. Thus, this paper demonstrates the characteristics of electrical vehicle powertrain noise, and the effect of passive damping material for the noise reduction. The typical motor noise can be affected by the motor torque. Also, it is demonstrated that the reduction gearbox may be a weak point for the noise path compared to the motor housing. With vehicle test, it is shown that the damping patch is more effective for noise reduction with deceleration condition than with acceleration condition.