• Title/Summary/Keyword: 파레토 최적해 집합

Search Result 15, Processing Time 0.022 seconds

A Study on the Reduction of Common Words to Classify Causes of Marine Accidents (해양사고 원인을 분류하기 위한 공통단어의 축소에 관한 연구)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.109-118
    • /
    • 2017
  • The key word (KW) is a set of words to clearly express the important causations of marine accidents; they are determined by a judge in a Korean maritime safety tribunal. The selection of KW currently has two main issues: one is maintaining consistency due to the different subjective opinion of each judge, and the second is the large number of KW currently in use. To overcome the issues, the systematic framework used to construct KW's needs to be optimized with a minimal number of KW's being derived from a set of Common Words (CW). The purpose of this study is to identify a set of CW to develop the systematic KW construction frame. To fulfill the purpose, the word reduction method to find minimum number of CW is proposed using P areto distribution function and Pareto index. A total of 2,642 KW were compiled and 56 baseline CW were identified in the data sets. These CW, along with their frequency of use across all KW, are reported. Through the word reduction experiments, an average reduction rate of 58.5% was obtained. The estimated CW according to the reduction rates was verified using the Pareto chart. Through this analysis, the development of a systematic KW construction frame is expected to be possible.

Development of Control Algorithm for Semi-active TMD using MOGA (MOGA를 이용한 준능동 TMD 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Gee-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.331-334
    • /
    • 2010
  • 본 논문에서는 준능동 TMD가 설치된 고층건물의 풍응답을 효과적으로 저감시키기 위하여 다목적 유전자알고리즘(MOGA)을 이용한 퍼지관리제어기를 개발하였다. 퍼지관리제어기는 하위제어기인 그라운드훅(groundhook) 제어알고리즘과 스카이훅(skyhook) 제어알고리즘에 의해서 결정된 제어명령을 적절하게 하나로 합치는 역할을 한다. 다목적 유전자알고리즘의 최적화 과정에서 75층의 가속도 응답과 준능동 TMD의 변위응답을 목적함수로 사용하였다. 다목적 유전자알고리즘 최적화과정을 통하여 퍼지관리제어기의 파레토 최적해집합을 효과적으로 얻을 수 있었다. 다목적 유전자알고리즘에 의하여 개발된 퍼지관리제어기는 가중합방법의 제어기보다 매우 우수한 성능을 나타내었다.

  • PDF

Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm (다목적 유전알고리즘을 이용한 익형의 전역최적설계)

  • Lee, Ju-Hee;Lee, Sang-Hwan;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.

A Study for an Automatic Calibration of Urban Runoff Model by the SCE-UA (집합체 혼합진화 알고리즘을 이용한 도시유역 홍수유출 모형의 자동 보정에 관한 연구)

  • Kang, Tae-Uk;Lee, Sang-Ho;Kang, Shin-Uk;Park, Jong-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.15-27
    • /
    • 2012
  • SWMM (Storm Water Management Model) has been widely used in the world as a typical model for flood runoff analysis of urban areas. However, the calibration of the model is difficult, which is an obstacle to easy application. The purpose of the study is to develop an automatic calibration module of the SWMM linked with SCE-UA (Shuffled Complex Evolution-University of Arizona) algorithm. Generally, various objective functions may produce different optimization results for an optimization problem. Thus, five single objective functions were applied and the most appropriate one was selected. In addition to the objective function, another objective function was used to reduce peak flow error in flood simulation. They form a multiple objective function, and the optimization problem was solved by determination of Pareto optima. The automatic calibration module was applied to the flood simulation on the catchment of the Guro 1 detention reservoir and pump station. The automatic calibration results by the multiple objective function were more excellent than the results by the single objective function for model assessment criteria including error of peak flow and ratio of volume between observed and calculated flow. Also, the verification results of the model calibrated by the multiple objective function were reliable. The program could be used in various flood runoff analysis in urban areas.

Optimization of Stacking Strategies Considering Yard Occupancy Rate in an Automated Container Terminal (장치장 점유율을 고려한 자동화 컨테이너 터미널의 장치 위치 결정 전략 최적화)

  • Sohn, Min-Je;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1106-1110
    • /
    • 2010
  • This paper proposes a method of optimizing a stacking strategy for an automated container terminal using multi-objective evolutionary algorithms (MOEAs). Since the yard productivities of seaside and landside are conflicting objectives to be optimized, it is impossible to maximize them simultaneously. Therefore, we derive a Pareto optimal set instead of a single best solution using an MOEA. Preliminary experiments showed that the population is frequently stuck in local optima because of the difficulty of the given problem depending on the yard occupancy rate. To cope with this problem, we propose another method of simultaneously optimizing two problems with different difficulties so that diverse solutions can be preserved in the population. Experimental results showed the proposed method can derive better stacking policies than the compared method solving a single problem given the same computational costs.