• Title/Summary/Keyword: 파라핀계 탄화수소

Search Result 13, Processing Time 0.028 seconds

Isomer Formation in the Chlorination of Highmolecular Paraffinic Hydrocarbons by Various Halogenating Agents (여러 종류의 할로겐 화합물과 고분자량 파라핀계 탄화수소의 염소화에서 생기는 이성질화에 관한 연구)

  • Li-Hoan Kung
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.390-405
    • /
    • 1988
  • The chlorination of $C_7H_16,\;C_8H_18,\;C_10H_22,\;and\;(Me_2CH)_2$ with N-Chlorosuccinimide, tert-BuOCl, $CCl_3SO_2Cl,\;CCl_4,\;CCl_3SCl,\; PCl_5,\;and\;Cl_2\;in\;C_6H_6\;or\;CS_2$ which both form loose complexes with $Cl_2$ atoms yielded mixtures of isomeric monochloroalkanes which were analyzed quantitatively. An isomer ratio differing from that known for the substitution of paraffinic hydrocarbons was observed. The isomer distribution observed is the result of the combined effects of the differing C-H dissociation energies of the different types of H atoms of the alkane and of the free energy of the attacking radical with polar effects of the attacking radical as well as of the hydrocarbon.

  • PDF

Reaction characteristics of hydrocarbon fuels under various operation conditions of hydro-upgrading process for vegetable oil-based bio-jet fuel production (식물성 오일 기반 바이오항공유 제조공정에서 수소첨가 업그레이딩을 위한 운전조건에 따른 탄화수소화합물의 특성)

  • Kwak, Yeonsu;Jang, Jung Hee;Kim, Sungtak;Ahn, Minhwei;Lee, Eun-Sil;Han, Gi Bo;Jeong, Byung Hun;Han, Jeong Sik;Jeon, Cheol-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.731-743
    • /
    • 2018
  • In bio-jet fuel production, selecting operating conditions of hydro-upgrading is of great importance to make iso-Paraffin rich hydrocarbons with carbon distribution including jet fuel range. Herein, iso-Paraffin rich biofuel including jet fuel range hydrocarbons ($C_8-C_{16}$) is produced from simultaneous cracking and isomerization using n-Paraffin rich hydrocarbon derived from hydrotreated vegetable oil over 0.5 wt..% Pt/Zeolite catalyst. We report and analyze the yields and compositions in the produced hydrocarbons affected by various operating conditions, such as reaction temperature, reaction pressure, molar ratio of reactants, and weight hourly space velocity. Aforementioned operating conditions not only can help interpret the reaction dynamics of hydro-upgrading, but also further produce bio jet-fuel after distillation.

A Study on Reaction Characteristics for NOx Reduction in Flue Gas Denitrification using Plasma (플라즈마 배연탈질에서 NOx 저감에 관한 반응제 특성 연구)

  • Baek, Hyun Chang;Shin, Dae Hyun;Woo, Je Kyung;Kim, Sang Guk;Kim, Dong Chan;Park, Yeong Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2247-2254
    • /
    • 2000
  • This study was carried out to investigate the reaction characteristics of NOx with reagents to grope the power consumption rate reduction and NOx removal rate improvement for the non-thermal plasma denitrification process. The experiments were performed using the real flue gas and wire-plate type plasma reactor. and the flow rate of real flue gas is $20Nm^3/hr$. Paraffinic and olefinic hydrocarbons and ammonia were used as reagents. Olefinic hydrocarbon oxidizes NO more actively than paraffinic hydrocarbon under the non-thermal plasma conditions, resulting in the generation of large amount of $NO_2$ and a very small amount of CO. When the initial NOx concentration increases. oxidation rate of NO decreases and the consumption rate of olefinic hydrocarbon increases significantly. On the other hand. $NH_3$ did not promote reduction reaction with NO under non-thermal plasma conditions. however, there was a tendency that the NHa was effective to remove the $NO_2$ oxidized by olefinic hydrocarbon.

  • PDF

Characteristics of pollutant emission from wallpapers - Around TVOC and HCHO - (벽지에서 발생되는 오염물질 방출특성 - TVOC와 HCHO를 중심으로 -)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Lee, Hong-Suk;Lim, Jun-Ho;Jang, Mee;Seo, Soo-Yun
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.542-551
    • /
    • 2005
  • This study is to investigate the characteristics of emission concentration according to wallpaper sort and emission time using small chamber method. The target compounds included 45 VOCs and formaldehyde, which were respectively determined by adsorption sampling and thermal desorption coupled with GC/MS method, and by sampling in DNPH cartridge and HPLC method. The emission factor of TVOC and HCHO was detected to $1.1mg/m^2{\cdot}h$ and $0.01mg/m^2{\cdot}h$ respectively, and the wallpapers of 25 satisfied emission standard. TVOC emission factor appeared in order of the concentration of PVC, natural, and Non-PVC wallpaper, while HCHO was detected very low concentration without relation to wallpaper sort. The paraffin hydrocarbons appeared to be the most contributable class of hydrocarbons in terms of their concentrations, followed by aromatics, and olefins, halogenated hydrocarbons was not detected. PVC wallpapers plentifully emitted TVOC above other wallpapers, and toluene was showed higher concentration of 10 times than natural wallpaper. In addition to, emission factor according to elapse was gradually decreased.

Prediction of Upper Flammability Limit of Paraffinic Hydrocarbons by Numerical Simulation (수치모사에 의한 파라핀족 탄화수소의 연소상한계의 예측)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.50-55
    • /
    • 1993
  • A new model for predicting upper flammability limits( UFL ) of paraffinic hydrocarbons is developed, based on statistics and numerical simulation. With the proposed model, UFL have been calculated for 24 compounds, and when compared with experimental data, this model produced average percent error of 2.96%. When compared to established methods published by Spakowski and Zabetakis, this model produced more accurate results.

  • PDF

Estimation of Upper Explosive Limits of Paraffinic and Olefinic Hydrocarbon Compounds (파라핀족과 올레핀족 탄화수소 화합물의 폭발상한계의 추산)

  • 하동명;이수경
    • Fire Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 1996
  • An estimation methodology, based on statistics and numerical method, has been developed for estimating the upper explosive limits(UEL) of paraffinic and olefinic hydrocarbon compounds. With proposed method, the UEL has been calculated for 24 paraffinic and 10 olefinic hydrocarbon compounds. The estimated the UEL agree with the experimental values within a few percent. A comparisond with four other methods avaiable in the literature are also presented. It is hoped eventually that this method will permit estimation of the UEL with improved accuracy and broader application for other compounds.

  • PDF

Influencing Factors on Cleaning Ability in the Formulated Hydrocarbon-based Cleaning Agents (탄화수소계 배합세정제에서의 세정성 영향인자 연구)

  • Jung, Young-Woo;Lee, Ho-Yeoul;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.143-150
    • /
    • 2007
  • The objective of this study is to develop hydrocarbon-based cleaning agents by blending paraffins, glycol ethers and siloxanes in oder to effectively clean contaminants such as flux, solder and grease. And the effect of cleaning ability by wetting index, aniline points and solubility parameter of the formulated hydrocarbon-based cleaning agents were studied in this work. The formulated hydrocarbon-based cleaning agents were prepared on the base of physical properties of their individual components. Wetting indexes and aniline points of their were measured through experiments and solubility parameters of their were calculated based on the Hansen's equation. In this study, evaluation of cleaning ability by cleaning agents were carried out using contaminants such as flux, solder, and grease. The experimental results showed that the cleaning ability of the formulated cleaning agents was excellent in cleaning contaminants such as flux, solder and grease and that the influencing parameters on their cleaning efficiency were found to be different according to contaminant types. MC($20.3MPa^{1/2}$), DF-1 ($24.2MPa^{1/2}$) and DF-2($21.5MPa^{1/2}$) with similar solubility parameter as flux ($21.3MPa^{1/2}$) showed 100% cleaning efficiency within 3 minutes in flux cleaning. And CFC-113, MC and 1,1,1-TCE with low aniline point less than $-20^{\circ}C$ showed excellent cleaning efficiency in solder cleaning. DG-1($16.2\;MPa^{1/2}$) and DG-2($15.5\;MPa^{1/2}$) with similar solubility parameter as grease($15.0{\sim}17.0\;MPa^{1/2}$) showed relatively low cleaning efficiency of grease, but CFC-113 and MC with high wetting index and low aniline point showed good cleaning efficiency in grease cleaning. As a result of this study, the hydrocarbon-based cleaning agents alternative to regulated cleaning agents such as CFC-113, 1,1,1-TCE and MC were able to be developed through properly blending paraffins, glycol ethers and siloxanes for cleaning flux, solder and grease. And it can be shown that various influencing parameters of cleaning efficiency such as wetting index, aniline point, solubility parameter and etc. of the non-aqueous cleaning agent should be reviewed for prediction of their cleaning ability and can be applied to formulation of cleaning agents.

  • PDF

Measurement of flash point for binary mixtures of Ethanol, 1-propanol, 2-propanol and 2,2,4-trimethylpentane (Ethanol, 1-propanol, 2-propanol 그리고 2,2,4-trimethylpentane 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • Flammable substances, such as organic solvents, are commonly used in laboratories and industrial processes. The flash point of flammable liquid mixtures is a very important parameter for characterizing the ignition and explosion hazards, and the flash points of mixtures of $C_2{\sim}C_3$ alcohols and 2,2,4-trimethylpentane were measured in the present study. The 2,2,4-trimethylpentane is an important component of gasoline and is frequently used in the petroleum industry as a solvent. Lower flash point data were measured for the binary systems {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane}, and {2-propanol + 2,2,4-trimethylpentane}. The flash point measurements were carried out according to the standard test method (ASTM D3278) using a Stanhope-Seta closed cup flash point tester. The measured flash points were compared with the predicted values calculated using Raoult's law and also following $G^E$ models: Wilson, Non-Random Two Liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC). These models were able to predict the experimental flash points for different compositions of {$C_2{\sim}C_3$ alcohols + 2,2,4-trimethylpentane} mixtures with minimal deviations. The average absolute deviation between the predicted and measured lower flash point was less than 1.28 K. A minimum flash point behaviour was observed in all of the systems as in the many observed cases for the hydrocarbon and alcohol mixtures.

Measurement of Flash Point for Binary Mixtures of 2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane, and Toluene at 101.3 kPa (2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane 그리고 Toluene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • For the design of the prevention and mitigation measures in process industries involving flammable substances, reliable safety data are required. An important property used to estimate the risk of fire and explosion for a flammable liquid is the flash point. Flammability is an important factor to consider when developing safe methods for storing and handling solids and liquids. In this study, the flash point data were measured for the binary systems {2-butanol + 2,2,4-trimethylpentane}, {2-butanol + methylcyclohexane} and {2-butanol + toluene} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a Stanhope-Seta closed cup flash point tester. A minimum flash point behavior was observed in the binary systems as in the many cases for the hydrocarbon and alcohol mixture that were observed. The measured flash points were compared with the predicted values calculated via the following activity coefficient (GE) models: Wilson, Non-Random Two-Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC) models. The predicted data were only adequate for the data determined by the closed-cup test method and may not be appropriate for the data obtained from the open-cup test method because of its deviation from the vapor liquid equilibrium. The predicted results of this work can be used to design safe petrochemical processes, such as the identification of safe storage conditions for non-ideal solutions containing flammable components.

Formulation of Alternative Non-Aqueous Cleaning Agents to Chlorofluorocarbon Compounds for Cleaning Flux, Solder and Grease (Flux, Solder 및 Grease 세정용 CFC 대체 비수계 세정제 배합 연구)

  • Jung, Young Woo;Lee, Ho Yeoul;Lee, Myoung Jin;Song, Ah Ram;Bae, Jae Heum
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.250-258
    • /
    • 2006
  • CFC compounds such as CFC-113 and 1,1,1-TCE, etc. have been used in various industries due to their excellent chemical stability, thermodynamic characteristics, non-inflammability and anti-corrosiveness. However, in oder to protect the earth environment, "the Montreal Protocol on substances that deplete the ozone layer" was adopted in 1989 for prevention of production and utilization of these CFC compounds and alternative cleaning agent have been required in the industry. The objective of this study is to develop non-aqueous cleaning agents that do not require major change of cleaning system, have excellent cleaning efficiency, are favorable to the environment, are harmless to the human body, and are not generated corrosive materials. In this work, non-aqueous cleaning agents have been formulated with glycol ether series and paraffinic hydrocarbon series with siloxane, and their physical properties and cleaning efficiencies were analyzed and compared with those of regulated materials. As a result of physical properties measurement of the formulated cleaning agents, it is expected that they may have good penetration ability into contaminated materials due to their properties with low density and low surface tension. Measurement of flash point and vapor pressure of the cleaning agents will be helpful for evaluation of their safety and working environment. The experimental results of cleaning flux, solder and grease by the formulated cleaning agents show that their cleaning abilities of soils were good and that there were no residues on the substance after cleaning. Therefore, alternative cleaning agents which have equivalent cleaning ability to regulating materials, good penetration ability and low hazard to human body, have been developed in this work.

  • PDF