• Title/Summary/Keyword: 파라메트릭 설계

Search Result 109, Processing Time 0.026 seconds

Parametric Study on the Design of Sandwich Beams and Plates for Machine Tool Structures (공작기계를 위한 보와 평판의 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim, Dae-Il;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2006
  • In this paper, polymer composites based sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure of machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance bending stiffnesses in two major directions at the same time. Dynamic robustness of a machine tool structure is investigated using modal analysis. From the results optimal configuration and materials for high precesion machine tools are proposed. And the plate was made of fiber reforced composite material and PVC foam.

Parametric Design Considerations for Lifting Lug Structure on Ship Block (선박블록 탑재용 러그구조의 파라메트릭 설계 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • In view of the importance of material reduction because of the jump in oil and steel prices, structural design studies for lifting lugs were performed. Hundreds of thousands of such lifting lug structures are needed every year for ship construction. A direct design study was reviewed using the developed design system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to understand the design efficiency and convenience of a lug structure, parametric studies for prototype lug shapes were performed using the developed design system. From these design studies, various patterns of design parameters for the lug structure according to changes in the main plate length were examined. Based on these parametric study results, design guides were developed for more efficiently suggesting structural data for enormous lug structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building (테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발)

  • Han, Sang-Eul;Lee, Han-Joo;Ryu, Jong-Hye;Jeong, So-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • In this paper, the optimal diagrid angle of atypical tall buildings has been found using diagrid optimization technique which is based on parametric algorithm. A diagrid is a diagonal grid which can be seen among atypical tall buildings and structures which effectively resist horizontal and vertical direction loads. Therefore, it is also the objective of this studyto find the maximum stiffness of atypical tall buildings by optimizing diagrid angle. Moreover, this study touches on both cylindrical and tapered off cylindrical structures, as shown in the examples to check the compatibility of optimum diagrid angle, which effectively resists horizontal deformation on top by optimization algorithm.

A Research on the Parametric Design Method in Schematic Design Phase for BIM application - Focused on Subject Classroom Design of Variation Type - (BIM 적용을 위한 계획설계 단계의 파라메트릭 설계방법에 관한 연구 - 교과교실제 설계를 중심으로 -)

  • Yun, Yong-G.;Kang, Tae-Woong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.5
    • /
    • pp.11-18
    • /
    • 2013
  • This study has revisited the definition and characteristics of BIM to contribute to the better understanding of this concept. For the successful application of BIM in architectural design field, it should start with public buildings like schools which can be standardized. Since a number of conditions of school design appear to suit the schematic design phase for BIM application more than do other types of building design, the viability of BIM was examined by applying parametric modeling(one of BIM's basic characteristics) to mass study in schematic design phase for the configuration of schools that adopt the variation type of subject classroom design of the $7^{th}$ National Educational Curriculum. In addition, this modeling technique was used with software of Rhino 3D and Grasshopper, which will have a linkage to environmental analysis in near future. Finally, it can be expected that the work efficiency will be maximized if BIM is going to be applied in the early design stage instead of the end stage.

Study on Application of Dampers and Optimal Design for Retractable Large Spatial Structures (개폐식 대공간 구조물의 감쇠장치 적용 및 최적설계에 관한 연구)

  • Joung, Bo-Ra;Kim, Si-Uk;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.351-358
    • /
    • 2020
  • This paper presents a tuned mass damper (TMD) utilizing a parametric design technique to reduce the dynamic responses to seismic loads of retractable large spatial structures. An artificial intelligence algorithm was developed to automatically search for the installation position of the damping device. This enables confirming the dynamic response of the structure in real time while finding the optimum position for the damping device. Further, the optimum mass of the damping device is determined from among several alternatives, and a design that can be effectively applied to both open and closed conditions of the roof is obtained.

A study of object information model of PSC box girder bridge for structural analysis (구조해석을 위한 PSC 박스의 객체 정보 모델에 관한 연구)

  • Cho, Sung-Hoon;Park, Jae-Guen;Lee, Heon-Min;Lee, Kwang-Myong;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.348-351
    • /
    • 2009
  • 본 논문에서는 구조해석을 위한 PSC 박스 거더교의 객체 정보 모델에 관한 연구를 수행하였다. 대상 교량의 객체 정보 모델을 생성하기 위해서는 수많은 형상 및 치수에 관한 파라미터를 필요로 하게 된다. 따라서 본 연구에서는 이 교량의 설계 목적에 맞는 파라미터를 분류하였고, 파라미터들 사이의 계층구조(Structure)와 상관관계를 정의하였다. 또한 본 연구에서 적용된 인터페이스 프로그램은 3차원 객체 모델에서 출력된 파라미터를 변환하여 구조해석을 위한 입력값으로 변환시켜, 해석 결과값을 구조계산서에 출력시킴으로써 엔지니어가 설계 타당성과 모델변경 요구를 용이하게 할 수 있게 하였다. 그리고 대상 모델에 대한 설계변경은 구조물의 특징에 맞는 상관파라메트릭 방법을 적용하여 신속하게 할 수 있도록 유도하였다. 이 연구를 통해 건설구조물의 설계를 3D 모델로 하기위한 가능성을 확인하였다.

  • PDF

Parametric Design Process for Structural Quantity Optimization of Spatial Building Structures (대공간 건축물 골조물량 최적화를 위한 파라메트릭 설계 프로세스)

  • Choi, Hyunchul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • In this paper, it is covered in detail the process of generating structural alternatives with geometry change and its optimization by StrAuto. The main roof structure of the Exhibition Center is modelled parametrically and the optimal alt is derived by observing volume changes according to geometry change of main roof truss. Existing studies performed optimization process through sections and properties due to the limitations of shape change, but this study have meaning of performing the optimization with geometry changes which is the most critical skills of StrAuto. By the process of securing a sufficient margin by geometry changes and reducing volume with the optimization of sections, despite of a partial optimization of large space structure, it could be reduced by 11.7% of the total volume.

A Study on the Development of Software Supporting the Superstructural Design of Offshore Plant (해양플랜트 상부구조설계 지원 소프트웨어 개발에 대한 연구)

  • Kim, Hyun-Cheol;Kook, Sung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.19-27
    • /
    • 2020
  • On an offshore plant topside, various types of offshore facilities for processing energy resources, such as oil and gas, and equipment and outfitting for connecting these facilities are installed in a limited space. An offshore plant superstructure is composed of numerous supporting rack structures and reinforcements for securing and supporting offshore installations and the related equipment. This paper describes the development of design support software to support this superstructure design efficiently. The developed design support software, which was based on AVEVA Marine's PML(Programmable Macro Language), supports the parametric method for superstructure design. A method of batch 3D modeling from 2D drawings for supporting rack structure produced in the basic and detailed design was also developed using AutoLisp. In addition, through the application example of superstructure module design, the design support software introduced in this paper can be expected to reduce the design time by more than 90% compared to the use of only basic functions of AVEVA PDMS.

Parametric Design System Basedon Design Unit and Configuration Design Method (구성 설계방법과 설계유니트를 이용한 파라메트릭 설계 시스템)

  • 명세현;한순흥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.702-706
    • /
    • 1995
  • Integration of CAM and CAM information is important in the CIM era. For a CIM system, the feature representation can be a solution to the integration of product model data. These are geometry feature, functional feature, and manufacturing feature in the feature context. This paper proposes a framework to integrate the configuration design method, parametric modeling and the feature modeling method. The concept of design unit which is one level higher than functional feature and parametric modeling concept with functional features have been proposed.

  • PDF