시스템을 입력과 출력값 만으로 제어하고자 할 경우에는, 플랜트의 파라메타를 추정하면서 제어해 나가야 할 것이다. 이러한 경우에는, 귀환제어나 최적제어 형태로는 여러가지 문제점이 발견되어서, 최근에 적응제어가 많이 연구되고 있다. 이에는 Gain-Scheduling 방법, Self-tuning regulator 방법 및 model reference adaptive control 방법이 있다. Gain-Scheduling 방법은 미지의 파라메타가 plant에 있을지라도, 이를 즉시 예측할 수 있을 경우 보조변수 추정을 통하여 이득을 조절하여 시스템을 안정시키는 것이고, self tuning regulator는 보조변수를 직접 조정하여 시스템을 제어한다. 또 model reference adaptive control 방법은 기준모델을 정하여, 이에 따라 관측기 등을 통하여, 플랜트의 파라메타를 추정 제어해 나가는 것이다. 이때 기준 모델의 출력과 플랜트 출력사이의 오차를 어떻게 할 것인가? 추정되는 파라메타와 오차와의 대수관계 및 차수 등, 그 한계 해석이 최근의 MRAC 설계연구에 큰 과제가 되어 왔다. 이에 본 연구에서는 신호합성 및 해석에 뛰어난 기능이 있는 Walsh 함수를 이용하여, 간단한 Micro computer의 도움으로, 오차 함수를 합성하고, 미지의 파라메타를 추정하여, 시스템의 adaptive filter설계에의 가능성에 대하여 연구하고자 한다. 또 이를 실제 예를 들어 고찰하였다.
본 논문은 한국어 음성 인식을 위한 유성음, 무성음, 묵음 식별에 관한 연구이다. 주어진 음성 구간을 3가지 음성 신호 부류로 식별하기 위하여 패턴 인식 방법을 사용하였다. 여기에 사용한 분석 파 라메타는 음성 신호의 영교차율, 대수 에너지, 정규화 된 첫 번째 자동 상관 계수, 선형 예측 분석에서 얻은 첫 번째 예측 계수, 그리고 예측 오차의 에너지이다. 한편 측정된 파라메타들이 다차원 가우스 확 률 밀도 함수에 따라 분산되었다는 가정하에서 어어진 최소 거리 법칙에 기본을 두고 음성 구간을 결정 하였다. 측정된 파라메타들을 여러 가지 방법으로 조합하여 식별한 결과 영교차율, 첫 번째 예측계수, 예측 오차의 에너지를 측정 파라메타로 사용했을 때 1%보다 적은 식별 오차율을 얻었다.
시벼형 신호인 음성 신호의 분석에 칼만필터를 이용하였다. 일반적인 음성 분석은 프레임단위의 처리방법인 선형 예측 부호화 기법을 주로 이용하지만 음성의 시변 특성을 파악하는데에는 적절하지 못 하다. 따라서 순차적인 추정기법으로 많이 이용되는 칼만 필터를 음성 분석에 적용하였다. 또한 음성과 같은 시변신호에서는 과거 신호의 잡음의 분산값에 적당한 가중치를 부가하므로써 과거의 신호에 의해 서 현재의 추정값에 미치는 영향을 줄였으며 이를 음성의 천이 구간에서의 파라메타 추정에 사용하였 다. 그리고 음성신호 모델에서 생기는 모델링 오차는 일반적으로 백색 가우시안 잡음으로 가정하고 있 으나 이는 자음과 같은 무성음에서 특징 파라메타 푸정에는 오차가 적지만 모음등의 유성음에서는 음성 발생시의 여기신호인 펄스열에 의해서 많은 모델링 오차를 생기게 한다. 따라서 모델링 오차신호는 Non-Gaussian 확률분포로 가정한 후 로버스트 칼만 필터를 사용하여 합성으멩 대해 특징 파라메터를 추출하였다.
A number of creep data were collected and filed for type 316LN stainless steels through literature survey and experimental data produced in KAERI. Using these data, polynomial equations for predicting creep life were obtained for Larson Miller (L-M), Qrr-Sherby-Dorn (O-S-D) and Manson-Haferd (M-H) parametric methods. In order to find out the suitability for them, the relative standard error (RSE) and standard error of estimate (SEE) values were obtained by statistical process of creep data. The O-S-D parameter showed better fitting to creep-rupture data than the L-M or the M-H parameters, and the three parametric methods did not generate the large difference in the SEE and the RSE values.
아미카신은 그람음성균 감염에 사용하는 아미노글리코사이드계 항생제로 이독성 및 신독성 등의 부작용과 큰 개인차로 혈중농도 모니터를 통한 투여계획이 필요한 약물이다. 본 연구에서는 16명의 위암환자에서 비선형최소자승 회귀분석과 베이시안 분석에 의한 아미카신의 약물동태에 분석오차의 영향을 연구하였다. 약물투여는 아미카신 7.5 mg/kg을 30분에 걸쳐 12시간 간격으로 등속 주입하였으며, 혈액 채취는 정상상태에 도달되었다고 판단되는 첫 약물투여 72시간 후에, 약물 주입 5분전과 주입이 끝난 뒤 30분과 2시간에서 세차례 채취하였다. 혈청중 약물농도는 형광편광면역법으로 측정하였다. 분석오차를 위해 0, 5, 15, 30, 60 및 $80\;{\mu}g/ml$에 해당하는 아미카신 혈중농도(C)을 네차례 측정하여 각 혈중농도의 표준편차 (SD)을 구하였다 아미카신 분석오차를 위한 다항식이 $SD=0.3017+(0.00538C)+(0.00112C^2)$, $R^2=0.974$이었다 이 식에서 구한 SD 값으로 분석시 가중치를 주었을 때, 비선형최소자승 회귀분석에 의한 아미카신의 약물동태학적 파라메타($V_d$, $K_{el}$, $K_{slpoe}$, $t_{1/2}$)에 유의성있는 영향을 주었으나, 베이시안 분석에 의한 아미카신의 약물동태학적 파라메타에는 영향이 없었다. 이 다항식에 의한 분석오차를 비선형최소자승 회귀분석에 의한 아미카신 약물동태학적 파라메타 분석시 적절히 사용하면 안전하고 효율적인 투여계획을 할 수 있다.
토브라마이신은 그람음성균 감염에 사용하는 아미노글리코사이드계 항생제로 이독성 및 신독성 등의 부작용과 큰 개인차로 혈중농도 모니터를 통한 투여계획이 필요한 약물이다. 본 연구에서는 16명의 위암환자에서 비선형 최소자승 회귀분석과 베이시안 분석에 의한 토브라마이신의 약물동태에 분석오차의 영향에 대하여 연구하였다. 약물투여는 토브라마이신 1-2 mg/kg을 30분에 걸쳐 8시간 간격으로 등속 주입하였으며, 혈액 채취는 정상상태에 도달되었다고 판단되는 첫 약물투여 72시간 후에, 약물 주입 5분전과 주입이 끝난 뒤 30분과 2시간에서 세차례 채취하였다. 혈청중 약물농도는 형광편광면역법으로 측정 하였다. 분석오차를 위해 0, 1, 2, 4, 8 및 12 ${\mu}g/mL$에 해당하는 토브라마이신 혈중농도(C)을 네차례 측정하여 각 혈중농도의 표준편차 (SD)을 구하였다. 토브라마이신 분석오차를 구하기 위한 다항식이 SD = 0.0224+0.0540C+0.00173C2, $R^2$ = 0.935이었다. 이 식에서 구한 SD 값으로 분석시 가중치를 주었을 때, 비선형 최소자승 회귀분석에 의한 토브라마이신의 약물동태학적 파라메타 ($V_d$, $K_{el}$, $K_{slpoe}$, $t_{1/2}$)에 유의성있는 영향을 주었으나, 베이시안 분석에 의한 토브라마이신의 약물동태학적 파라메타에는 영향이 없었다. 이 다항식으로 부터 구한 분석오차를 토브라마이신의 비선형 최소자승 회귀분석을 이용한 약물동태 연구 및 파라메타 분석에 적용하여 좀 더 정확한 투여용량을 결정할 수 있으며, 더 나아가 토브라마이신 약물동태 시뮬레이션 연구에 응용할 수 있다.
본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.
If the control force designed on the basis of the mathematical model with parameter errors is applied to control the actual system, the closed-loop performance of the actual system will be degraded depending on the degree of the errors, In this study, the effect of parameter errors on the robustness of several natural controls has been analyzed and compared. Every asymptoic stability condition for the natural controls has been derived using Lyapunov approach, and the characteristics of the stability conditions has also been compared. The extent of deviation of the closed-loop performance from the designed one for the natural controls is derived using operator techniques, and evaluated by numerical method. It has been found that the optimal control, acceleration feedback control, and acceleration-position feedback control among the considered natural controls would be robust one with respect to the parameter errors.
지금까지 교통수요 예측에 사용된 OD는 차량 번호판조사, 노측면접조사, 가구방문조사, 폐쇄선 조사 등과 같은 직접적인 표본조사 자료를 이용한 전수화 과정을 통하여 OD를 작성하였다. 그러나 이와 같은 OD는 표본조사 및 전수화 과정에서 많은 오차를 내포하고 있으며, 이러한 오차는 예측된 교통량이 관측치와 상이하게 나타나는 문제점을 지니고 있다. 따라서 본 연구에서는 대중교통(버스, 지하철) 전수화 자료나 다름없는 교통카드 자료를 이용하여 통행분포 모형 중 가장 널리 사용되고 있는 중력모형(gravity model)중 이중제약 중력모형을 통하여 관측교통량과 추정교통량을 최소화 시키는 파라메타(parameter) 추정법을 제시하고자 한다. 파라메타 추정결과 버스는 =0.57, ${\beta}$=0.14, 지하철은 ${\alpha}$=0.21, ${\beta}$=0.05로 분석되었으며, 통계적 검증 결과 t-검증과 상관계수, Theil 부등계수 모두 관측량과 추정량의 차이가 없다는 결과 값이 도출되어 본 연구에서 제시한 파라메타 추정법이 통계적으로 유의한 것으로 나타났다.
본 연구에서는 RLS(Rescursive Least Square) 알고리즘을 이용하여 정전용량형 습도센서를 사용한 원격 RF 센서 시스템의 시변 파라메타를 추정하고자 한다. IC 칩 형태의 원격 RF 센서 시스템이 가지는 구성의 복잡성 그리고 전력소모 문제를 해결하기 위해 보다 간단한 유도결합모델이 제안된다. 모델기반의 RLS 알고리즘을 수학적인 모델로 유도된 시스템에 적용시키기 위해 페이저법을 이용하여 모델의 파라메타를 재배열한다. 오차 제곱합의 수렴특성을 가진 RLS 알고리즘을 이용하여 시변 파라메타를 추정하며, 잡음을 내포한 측정 데이터에 대한 추정 성능을 확인함으로써 그 유효성을 검증하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.