• Title/Summary/Keyword: 파괴 변형률

Search Result 436, Processing Time 0.026 seconds

Stress-strain Model of Laterally Confined High-strength Concrete with the Compressive Fracture Energy (압축파괴에너지를 도입한 횡구속 고강도 콘크리트의 응력-변형률 모델)

  • Hong, Ki-Nam;Shim, Won-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • In this paper, a stress-strain model for high-strength confined concrete is proposed using compressive fracture energy. In the compression test performed by author in Reference [6], an acrylic bar with strain gauges was embedded in the center of the specimen to measure the local strain distribution. It was found from the test that the local strain measurement by this acrylic rod is very effective. The local fracture zone length was defined based on the local strain distribution measured by the acrylic rod. Specifically, it was defined as the length where the local strain increases more than twice of the strain corresponding to maximum stress. In addition, the stress-strain relationship of confined concrete with compressive fracture energy is proposed on the assumption that the amount of energy absorbed by the compressive members subjected to the given lateral confining pressure is constant regardless of the aspect ratio and size. The proposed model predicts even results from other researchers accurately.

Estimation of Local Strain Distribution of Shear-Compressive Failure Type Beam Using Digital Image Processing Technology (화상계측기법에 의한 전단압축파괴형 보의 국부변형률분포 추정)

  • Kwon, Yong-Gil;Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The failure behavior of RC structure was exceedingly affected by the size and the local strain distribution of the failure zone due to the strain localization behavior on the tension softening materials. However, it is very difficult to quantify and assess the local strain occurring in the failure zone by the conventional test method. In this study, image processing technology, which is available to measure the strain up to the complete failure of RC structures, was used to estimate the local strain distribution and the size of failure zone. In order to verify the reliability and validity for the image processing technology, the strain transition acquired by the image processing technology was compared with strain values measured by the concrete gauge on the uniaxial compressive specimens. Based on the verification of image processing technology for the uniaxial compressive specimens, the size and the local strain distribution of the failure zone of deep beam was measured using the image processing technology. With the results of test, the principal tensile/compressive strain contours were drawn. Using the strain contours, the size of the failure zone and the local strain distribution on the failure of the deep beam was evaluated. The results of strain contour showed that image processing technology is available to assess the failure behavior of deep beam and obtain the local strain values on the domain of the post-peak failure comparatively.

Review on the Modeling of Strain Softening and Localization Failure (변형률연화와 국소화 파괴의 모델링 리뷰)

  • 박재균
    • Computational Structural Engineering
    • /
    • v.17 no.2
    • /
    • pp.20-23
    • /
    • 2004
  • 공학적 응력-변형률 곡선에서 재료의 파괴직전에 흔히 나타나는 변형률연화 (strain softening) 현상은 국부의 집중소성변형 현상과 밀접한 관계가 있다 그러나 변형률연화는 음수의 기울기를 가지는 응력-변형률 곡선을 의미하며, 이 모델은 유한요소해석의 결과가 그 요소의 크기에 따라 수렴점이 달라지는 근본적인 문제를 가진다. 따라서 1980년대 이후 많은 학자들이 이 현상의 적절한 모델을 찾기 위한 노력을 기울여왔다. (중략)

Failure Time Prediction by Nonlinear Least Square Method with Deformation Data (계측 자료의 비선형최소자승법을 이용한 파괴시간 예측)

  • Yoon, Yong-Kyun;Kim, Byoung-Chul;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.558-566
    • /
    • 2009
  • Time-dependent behavior is a basic mechanical property of rocks. Predicting the failure time of rock structures by analyzing the time-dependent characteristic is important and problematic. It is tried to predict the failure time of tunnel, slope & laboratory creep test specimen from measured displacement(or strain) and rate with relationship suggested by Voight($\ddot{\Omega}=A\dot{\Omega}^\alpha$, where $\Omega$ is a measurable quantity such as strain & displacement and A & $\alpha$ are constants). A & $\alpha$ are estimated through applying the nonlinear least square method to the single and double integrated Voight's equations and utilized to predict the failure time. Predicted failure time is in accordance with real one except minor error. Linear inverse rate method applied to creep strain and rate yields a poor linear correlation of data and precision of predicted failure time is not better than methods using strain and rate.

Fracture Prediction in Drawing Processes of AZ31 alloy Sheet by the FEM combined with a Ductile Fracture Criterion considering Strain Rate Effect (변형률 의존성 연성파괴이론과 유한요소법에 의한 AZ31합금 판재의 드로잉 성형공정시 파단발생 예측)

  • Kim, Sang-Woo;Lee, Young-Seon;Kim, Dae-Yong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.614-616
    • /
    • 2011
  • 본 연구에서는 유한요소법과 변형률 의존성 연성파괴이론을 이용하여 드로잉 공정에서의 AZ31 마그네슘 합금 판재의 파단 발생을 예측 하였다. 다양한 온도에서의 사각컵 드로잉 실험을 수행하여, 각 온도조건에서의 파단깊이를 측정하였으며, 고온 인장시험을 통해 연성파괴상수를 온도 및 변형률 속도에 의존적인 값으로 표현하고, 실험과 동일하게 모사된 유한요소해석을 수행하였다. 해석결과 얻어진 각 요소의 온도 및 변형률 속도에 따른 연성파괴상수를 이용하여 파단발생을 예측하였으며, 실험결과와 검증하였다.

  • PDF

A Study of a Variety of Sands in Stress-dilatancy Relationships (각 종 모래의 Stress-dilatancy 관계에 관한 연구)

  • 박춘식;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation fur small strain measurements, Seven types of sand of world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to the peak were obtained by measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. The result showed that the relationship between the principal stress ratio and the principal strain increment ratio was constant, being rarely affected by the over-consolidation ratio and the confining pressure. Although in the small strain the anisotropy hardly affected the relationship between the principal stress ratio and the principal strain increment ratio, the K value around the peak varied according to the $\delta$ value. In general, Rowe\`s stress-dilatancy equation works fairly well from the small strain to the peak.

The Characteristics for Mode I Interlaminar and Intralaminar Fractures of Cross-Ply Carbon/Epoxy Composite Laminates Based on Energy Release Rate (변형률 에너지 해방률에 기반한 Carbon/Epoxy 직교적층판의 모드 I 층간 및 층내 파괴 특성 분석)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Woo, Kyeong-Sik
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • This paper describes the characteristics for mode I interlaminar and intralaminar fractures of cross-ply carbon/epoxy composite laminates. We obtained mode I interlaminar fracture toughness and mode I intralaminar fracture toughness based on energy release rate and Finite Element Analysis (FEA). For this purpose, the Double-Cantilever Beam (DCB) test and FEA were performed for cross-ply DCB specimens. Also, the behavior of load-displacement curve at the interlaminar and intralaminar crack was analyzed. The results show that mode I intralaminar fracture toughness was lower than mode I interlaminar fracture toughness in the cross-ply DCB specimen.

A Study on dynamic Fracturing Behavior of Anisotropic Granite by SHPB Test (스플릿 흡킨슨 바(SHPB)를 이용한 이방성 화강암의 동적파괴거동 연구)

  • Choi, Mi-Jin;Cho, Sang-Ho;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.214-218
    • /
    • 2008
  • Dynamic fracturing of anisotropic granite was investigated by SHPB (Split Hopkinson Pressure Bar). Energy absorption during the test and maximum stress were increased as strain rate increased. Maximum stresses in every direction were dependent on the strain rate but not so sensitive to anisotropy. Elastic wave velocity was decreased as strain rate increased and dependent on strain rate in every direction. Especially, elastic wave velocity decreased more rapidly in a strong rock.

An Experimental Study on the Effective Strain of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (FRP로 보강된 철근콘크리트 보의 유효 변형률 예측에 대한 실험적 연구)

  • Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The shear failure modes of FRP strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are externally wrapped with FRP composites, many beams fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the effective strain of the FRP must be blown. This paper presents the results of an experimental study on the performance of reinforced concrete beams externally wrapped with FRP composites and infernally reinforced with steel stirrups. The main parameters of the tests were FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continues sheets or strips). The experimentally observed effective strain of the FRP was compared with the strain calculated using a proposed method.

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.