• Title/Summary/Keyword: 파괴기구

Search Result 250, Processing Time 0.027 seconds

배수관내의 공기압력 변동의 완화방법

  • 유건석;이용화
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.32 no.10
    • /
    • pp.27-30
    • /
    • 2003
  • 배수관내의 공기의 압력변동을 완화시키는 방법의 하나인 통기밸브 등에 대해 소개한다. 배수설비의 목적은 위생기구로부터의 오배수를 건물 밖으로 신속하게 배출함과 동시에 배수관내에 악취성분을 포함하고 있는 오염된 공기가 실내로 침입하여 실내공기가 오염되는 것을 방지하기 위한 역할도 한다. 하수가스의 침입을 방지하기 위해 각종 형상의 배수트랩을 설치하는데, 여러 가지 원인에 의해 트랩내의 봉수는 파괴되기도 한다. 봉수파괴 원인 중에서도 가장 큰 영 향을 미치는 사이 폰 작용에 의한 봉수 파괴는 배수 수직관 및 수평주관내의 공기의 압력변동이 원인(유도사이펀 현상)이 되어 발생하거나 배수자신(자기사이펀 현상)에 의해 발생한다. 배수관내의 압력은 배수부하가 발생한 경우에는 그 배수에 의한 공기의 이동 등에 의해 변동하며, 배수가 없어도 배수관 접속부의 기압변동이나 상승기류에 의해 변동된다.(중략)

  • PDF

Crack Arrest Toughness of Thick Steel Plate Welds for Ship Building (선급 극후물 강재 용접부 취성균열 정지특성)

  • Park, Joon-Sik;Jung, Bo-Young;An, Gyu-Baek;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.9-14
    • /
    • 2007
  • 선박의 고강도화 및 극후물화가 진행됨에 따라 선체 구조물의 파괴 특성에 대한 관심이 높아지고 있으며, 최근 균열정지의 관점에서 취성균열 정지특성에 대한 연구가 활발히 이루어지고 있다. 기존의 연구결과에 따르면 65mmt 이상의 극후물 용접부에 대해서 취성균열 정지특성의 저하가 발생할 가능이 있다고 보고되고 있으며, 취성균열 정지특성이 우수한 강재의 개발 이외에 용접부 보강재의 부착, 보수 용접 실시 등 개선 방안을 마련하기 위한 다양한 연구가 진행되고 있다. 그러나 극후물 용접부 취성균열 전파기구에 관한 규명은 현재 전무한 실정이며, 강재 두께의 영향 이외에 용접 입열량 용접부 잔류응력 등의 효과가 복합적으로 검토되어야 한다. 아울러 극후물 용접부 균열정지 파괴인성의 평가, 대형파괴시험을 대체할 소형시험법의 개발 및 검증 등에 관한 연구가 요구된다.

Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • The impact strength and fracture behavior of rubber/polymer composites were investigated with respect to two factors: (i) characteristic ratio, $C_{\infty}$ as a measure of chain flexibility of the polymer matrix and (ii) the rubber particle size in polymer blend system. In this study C was controlled by the composition ratio of polyphenylene oxide (PPO) and polystyene (PS). Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted. Finite element analysis were carried out to gain understanding of plastic deformation mechanism (shear yielding and crazing) of these materials. Shear yielding was found to be enhanced when the flexibility of matrix polymer was relatively low and the rubber particles were small.

  • PDF

A Study on the Impact Fracture Behavior of Carbon Fiber Reinforced Plastics (CFRP 복합재료의 충격파괴거동에 관한 연구)

  • 고성위;김학돌;엄윤성;최영근;김형진;김재동;김엄기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.300-306
    • /
    • 2002
  • In this paper the failure mechanisms and Charpy impact tests of carbon fiber polypropylene composites have been studied in the temperature range -5$0^{\circ}C$ to 6$0^{\circ}C$ and 3 different supported length of specimen (span length). There are significant effects of temperature and span length on impact fracture toughness, which shows a peak at ambient temperature and decrease as temperature is reduced. Fracture toughness shows a maximum at span length s=20mm. Failure mechanisms are characterized based on SEM examination, which is correlated the measured fracture toughness. Mafor mechansms of this composites can be classified as fiber matrix debonding, delamination, fiber pull-out and matrix deformation.

Analysis of Mechanical Behavior and Fracture Toughness $K_{IC}$ on EGW Welded Joints for High Strength EH36-TMCP Ultra Thick Plate (고강도 극후판 EH36-TMCP강 EGW용접부의 역학적 거동 및 파괴인성 $K_{IC}$에 관한 해석)

  • Bang, Hee-Seon;Bang, Han-Sur;Joo, Sung-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.565-572
    • /
    • 2009
  • This work intends to establish the reliability and fracture toughness $K_{IC}$ criterion of welded joints by EGW for high strength EH36-TMCP ultra thick plate. For this, firstly thermo elasto-plastic analysis has been carried out on two pass X-groove butt joint model to clarify the thermal and mechanical behaviour(residual stress, plastic strain, magnitude of stress and their distribution and production mechanism). Moreover, to establish fracture criterion, analysis of fracture toughness $K_{IC}$ has been performed under the notch machined and residual stress with the load condition on EGW welded joints. A quantitative fracture criterion for EGW welded joints is suggested by using $K_{IC}$.

Interpretation of Corrosion Mechanism on Anode side Separator for MCFC (용융탄산염 연료전지에서 양극측 분리판의 부식기구 해석)

  • Park, Hyeong-Ho;Lee, Min-Ho;Lee, Kyu-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.571-576
    • /
    • 1998
  • This study was carried out for investigating the corrosion behaviors, corrosion mechanisms, and behaviors of elements on a separator for a molten carbonate fuel cell under both the electrolyte and anode side environment. A 310S austenitic stainless steel was used as the separator material. Corrosion proceeded via three steps; the formation step of corrosion product in which rapid corrosion takes place until stable corrosion product is formed after the beginning of corrosion, the protection step against corrosion until breakaway occurs after the formation step of stable corrosion product and the advancing step of corrosion after the breakaway. From the standpoint of the behavior of the elements in the specimen, Fe and Cr, Ni were enriched in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone, respectively. With respect to corrosion mechanism, ionization of electrolyte at the anode side was the main corrosion mechanism, and the final corrosion products were $LiFeO_2$ and $LiCrO_2$ at the anode side.

  • PDF

A Study on the Insulation Characteristics of Epoxy Composites Using Electric Field Simulation

  • Lee, Deok-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • In this paper, we aimed to identify the insulation characteristics and reliability of Epoxy composites, which are widely used as insulation material for electrical & electronic components and electric appliance. To this end, it was necessary to predict variations of electric field due to the distribution of fillers that must be added by economic and mechanical factors. So, we verified the result using an electric field analysis Simulator. Furthermore, under the condtion of DC voltage application, an dielectirc breakdown test was performed according to ambient temperature changes and the distribution of fillers, and the changes were observed. Three types of specimens were manufactured by adding 0, 50 and 100[phr] filling to Epoxy resin. In all specimens, as temperature was increased, the strength of the dielectric strength was decreased. When comparing the simulation results with the actual dielectric breakdown test results, we was able to confirm the technical applicability required for Insulation design of electric appliance.

A Study on the Effect of Fiber Orientation on the Interlaminar Fracture Toughness (층간파괴인성치에 대한 섬유방향의 영향에 관한 연구)

  • Lee, Jung-Kyu;Um, Yoon-Sung;Kim, Hyung-Jin;Koh, Sung-Wi
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.89-97
    • /
    • 1995
  • The investigate the effect of fiber orientation on the interlaminar fracture toughness of carbon fiber reinforced plastics three prepregs which are domestic products are used in this paper. Those are used for the unidirectional composites, but only one is used for the cross-ply laminate composites which is molded $[0/90]_{6s},\;[0/45]_{6s},\;and\;[0/45/90]_{4s}$. The specimens used for the mode I and mode II Tests are DCB and ENF samples are examined by scanning electron microscope(SEM). The value of $G_{IC}$ is almost same when modified three calculating methods are applied. The highest value of $G_{IC}$at crack initiation is obtained at the $[0/90]_{6s}$ interlaminar and the lowest one is at the $[0/45/90]_{4s}$ interlaminar. The highest value of $G_{IIC}$ at crack initiation, however, is obtained at the $[0/90]_{6s}$ interlaminar and the lowest one is at the $[0/45]_{6s}$. The photographs of SEM show a difference behaviour between mode I and mode II fracture surface.

  • PDF

Effect of moisture on interlaminar fracture toughness of CFRP composites (CFRP 복합재료의 층간파괴인성치에 미치는 수분의 영향)

  • 김형진;김종훈;고성위;김엄기
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 1996
  • Polymeric composites can be subjected to a wide variety of environmemtal conditions in practical use. One of most important conditions to be considered in the stuctural design using such materials is the miisture envirnment. Thus the moisture effect on interlaminar fracture toughness $G_IC$ and $G_IIC$ of CFRP(carbon fiber reinforced plastic) composed of carbon fibers and epoxy resin is studied in this paper. Specimens were first processed in 25, 50, $80^{\circ}C$ flesh water and $25^{\circ}C$ sea water for various periods of time. After that, the water absorption and fracture toughness tests were performed under laboratory atmosphere. As result, the specimen processed in $80^{\circ}C$ flesh water indicates the highest misture absorbing capability, the second in $50^{\circ}C$ flesh water, the third in $25^{\circ}C$ sea water, and the specimen in $25^{\circ}C$ flesh water does the lowest. The interlaminar fracture toughness $G_IC$ increases, approaches to the maximum, and decreases as the immersion time increases. In case of interlaminar $G_IIC$, the value of the specimen processed in $80^{\circ}C$ flesh water turns out to be higher than others. In addition, the scanning electron micrographs(SEM) of fracture surfaces were also examined in order to explain the mechanism of fracture.

  • PDF

A Fundamental Study on the Fracture Mechanism of Steel Plates under Completely Alternating Load (완전교번하중하(完全交番荷重下)에서의 강판(鋼板)의 파괴기구(破壞機構)에 관한 기차적(基磋的) 연구(研究))

  • Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.1-13
    • /
    • 1982
  • Transition process of plastic region. displacements, stresses and strains ahead the flaw tips were analysed by the finite element method on the steel plate with the circular hole and the one with the elliptical hole under completely alternating load (repetition of tensile loading, unloading and compressive loading). As the results, the followings were obtained. Transition process of elastic failure (yielding) region was estimated. From this the tendency was confirmed that the fracture would be initiated from ahead the flaw tip, and propagated along the $45^{\circ}$ direction. The fundamental data available in estimating the stress intensity factor that was considered as the core in analysing the fracture mechanism of steel plates were obtained. It was indicated that when unloading after tension the effect of compressive loading, and even the compressive reyield, was occured ahead the flaw tip. Similarly it was indicated that when unloading after compression the effect of tensile loading, and even the tensile reyield, was occured ahead the flaw tip. It was considered that these phenomena were occured because the unloading effect was constrained by the residual strains when unloading. It was considered that the fatigue phenomenon was occured ahead, the flaw tip by repetition of tensile yield, the above compressive reyield, compressive yeild and the above tensile reyield. In addition, the tendency was confirmed that the fracture ahead the flaw tip was occured as the flaw was changed from the circular hole to the elliptical hole and became to be the crack lastly.

  • PDF