• Title/Summary/Keyword: 파공크기

Search Result 4, Processing Time 0.02 seconds

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.

Analysis of Risk Assessment Factors for Gas leakage and Dispersion in Underground Power Plant (지하복합발전플랜트 내의 가스 누출 및 확산에 의한 위험성 평가 인자 분석)

  • Choi, Jinwook;Li, Longnan;Park, Jaeyong;Sung, Kunhyuk;Lee, Seonghyuk;Kim, Daejoong
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Gas leakage and dispersion in the underground LNG power plant can lead to serious fire and explosion accident. In this study, computational fluid dynamics simulation was applied to model the dynamic process of gas leakage and dispersion phenomena in a closed space. To analyze the risk assessment factor, such as the flammable volume ratio, transient simulations were carried out for different scenarios. The simulation results visualized the gas distribution with time in the closed space. The flammable volume ratio was introduced for quantitative analysis the fire/explosion probability.

Analysis of the Impact of Fire and Explosion Accidents due to LNG Leaks in the LNG Re-gasification Process (LNG 재기화 공정에서 LNG 누출에 따른 화재 및 폭발사고의 피해영향 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.825-833
    • /
    • 2018
  • In this study, one calculated the range of damage to the combustion characteristics according to the composition of LNG and the size of leaking holes, and analyzed the damage effect in case of leakage accidents caused by pipe damage in the re-gasification process for the LNG supply system. In order to confirm the combustion characteristics according to LNG composition, there was no significant difference in the result of risk analysis by LNG-producing areas. However, the higher the methane content of the components, the lower the risk of flash fire, hazardous areas of overpressure due to explosion, and thermal radiation damage caused by jet fire. In addition, one investigated the effect of leakage, holes, and ruptures on the risk range and explosions according to the size of the pipe-leakage hole. Also, the influence of overpressure and the range of damage from radiant heat could be predicted. One confirmed the effect of LNG composition and pipe-leakage size on fire and explosion.

Acoustic Emission based early fault detection and diagnosis method for pipeline (음향방출 기반 배관 조기 결함 검출 및 진단 방법)

  • Kim, Jaeyoung;Jeong, Inkyu;Kim, Jongmyon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.571-578
    • /
    • 2018
  • The deteriorated pipline often causes the unexpected leakage and crack. Negligence and late maintenance leads the enormous damage for gas and water resource. This paper proposes early fault detection and diagnosis algorithm for pipeline using acoustic emission (AE) signals. Early fault detection method for pipeline compares the frequency amplitude of the spectrum to that of the spectrum in normal condition. Larger amplitude of the spectrum indicates abnormal condition. Early fault diagnosis algorithm uses support vector machines (SVM), which is trained for normal and abnormal conditions to diagnose the measured AE signal from the target pipeline. In the experiment, a pipeline testbed is constructed similarly to real industrial pipeline. Normal, 5mm cracked, 10mm holed pipelines are installed and tested in this study. The proposed fault detection and diagnosis technique is validated as an efficient approach to detect early faulty condition of pipeline.