• Title/Summary/Keyword: 파고감쇠

Search Result 28, Processing Time 0.02 seconds

Study on Wave Reduction and Beach sand Capture Performance of Artificial Coral Reefs for In-situ Application (해안침식 현장 적용을 위한 인공산호초 연성공법의 파고 감쇠 및 침식해빈사 포집성능 분석)

  • Hong, Sung-Hoon;Kim, Tae-Yoon;Choi, Yun-Shik;Kim, Jeong-Ho;Kwon, Yong-Ju;Lee, Si-Hyeon;Lee, Gwang-Soo;Kwon, Soon-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.485-491
    • /
    • 2018
  • Because of the increase in coastal erosion problems, many studies have been conducted to prevent coastline retreat by developing low-cost, highly effective countermeasures. We developed the artificial coral reefs (ACRs) method as part of this research trend. To verify its coastal protection performance, we carried out performance tests on its wave attenuation and beach sand capture ability, which are the key barometers for this newly developed technology. In this study, three different types of methods, including natural beach, TTP, and ACRs, were used to determine the coastal protection efficiency under both ordinary and storm wave conditions. Based on the results of this study, ACRs were found to have the best wave attenuation performance and captured more than 20% of the total erosion area. This means the ACR method can be applied as a reliable countermeasure to protect a coastal zone.

Wave Simulation on Youngil Bay by WAM Extended to Shallow Water (천해역으로 확장된 WAM모형에 의한 영일만 파랑모의)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.511-520
    • /
    • 2007
  • WAM(WAve Model), deep water wave model has been extended to the region of shallow water, incorporating wave breaking, and triad wave interaction. To verify the model, numerical simulation of waves in Youngil bay, Pohang is performed and the simulated results show good agreements with measured wave data sets, one station at the mouth of bay and two stations inside the bay. As waves propagate toward the shore, wave height gradually diminishes by bottom friction and wave breaking, and wave direction, initially NE changes normal to the shore due to depth refraction.

Wave Breaking Characteristics over Composite Slope Section (복합단면지형에서의 파랑의 쇄파변형특성)

  • 권혁민;요시미고다;최한규
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.135-140
    • /
    • 1995
  • The procedure of wave energy dissipation due to breaking has been investigated with trains of the regular wave. To obtain the data for wave breaking and its deformation, experiments have been conducted by utilizing a horizontal step adjoining to a combined slope of 1/20 and 1/10. After breaking the wave height decreases by dissipation but attains a stable value at some distance from the breaking point Experimental results show that the stable wave is considerably affected by the wave period. The study gives the general form of stable wave height A new one-dimensional wave deformation model is proposed. being coupled with an approximated shoaling coefficient before wave breaking and the new energy dissipation term after breaking. It was compared with the experimental data. It predicts well the wave height deformation before and after wave breaking even on the abrupt change of the depth.

  • PDF

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.

A Study of the Inorganic Scintillator Properties for a Phoswich Detector (Phoswich 검출기 제작을 위한 무기 섬광체 특성 연구)

  • Lee, Woo-Gyo;Kim, Yong-Kyun;Kim, Jong-Kyung;Tarasov, V.;Zelenskaya, O.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.251-256
    • /
    • 2004
  • CsI(Tl), $CdWO_4(CWO),\;Bi_4Ge_3O_{12}(BGO)\;and\;Gd_2SiO_5:Ce(GSO)$ scintillators were studied to manufacture a phoswich detector. The maximum wavelengths of the CsI(Tl), CWO, BGO and GSO scintillators are 550 nm, 475 nm, 490 nm and 440 nm for the radioluminescence, and the absolute light outputs of the CsI(Tl), CWO, BGO and GSO scintillators are 54890 phonon/MeV, 17762 phonon/MeV, 8322 phonon/MeV and 8932 phonon/MeV with a neutral filter, and the decay time of the CsI(Tl), CWO, BGO and GSO scintillators is $1.3{\mu}s,\;8.17{\mu}s$, 213 ns and 37 ns by a single photon method. The phoswich detector which was manufactured with plastic and CsI(Tl) scintillators could separate the ${\beta}$ particle and ${\gamma}$ ray. The phoswich detector could also measure the pulse height spectra of the ${\beta}$ particle and ${\gamma}$ ray by a PSD method.

An Analysis of the Springing Phenomenon of a Ship Advancing in Waves (파랑 중에 전진하는 선박에 대한 스프링잉 현상 해석)

  • H.Y. Lee;H. Shin;H.S. Park;J.H. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • The very large vessels like VLCC and container ship have been built recently and those vessels have smaller structural strength in comparison with the other convectional skips. As a result the fatigue destruction of upper deck occurs a frequently due to the springing phenomenon at the encountering frequencies. In this study, the hydrodynamic loads are calculated by three-dimensional source distribution method with the translating and pulsating Green function. A ship is longitudinally divided into 23 sections and the added mass, damping and hydrodynamic force of each section is calculated. focusing only on the vertical motion. Stiffness matrix is calculated by the Euler beam theory. The calculation is carried out for Esso Osaka.

  • PDF

Measurement of Specific Radioactivity for Clearance of Waste Contaminated with Re-186 for Medical Application (의료용 Re-186 오염폐기물의 규제해제를 위한 방사능측정)

  • Kim, Chang-Bum;Lee, Sang-Kyung;Jang, Seong-Joo;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.633-638
    • /
    • 2017
  • The amount of radioactive waste has been rapidly increased with development of radiation treatment in medical field. Recently, it has been a common practice to use I-131 for thyroid cancer, F-18 for PET/CT and Tc-99m for diagnosis of nuclear medicine. All the wastes concerned have been disposed of by means of the self-disposal method, for example incineration, after storage enough to decay less than clearance level. IAEA proposed criteria for clearance level of waste which depends on the individual ($10{\mu}Sv/y$) and collective dose (1 man-Sv/y), and concentration of each nuclide (IAEA Safety Series No 111-P-1.1, 1992 and IAEA RS-G-1.7, 2004). In this study, specific radioactivity of radioactive waste contaminated with Re-186 was measured to confirm whether it meets the clearance level. Re-186 has long half life of 3.8 days relatively and emits beta and gamma radiation, therefore it can be applied in treatment and imaging purposes. The specific radioactivity of contaminated gloves weared by radiation workers was measured by MCA(Multi-channel Analyzer) which was calibrated by reference materials in accordance with the measuring procedure. As a result, comparison evaluation of decay storage period between the half-life which was calculated by attenuation curve based on real measurement and physical half-life was considered, and it is showed that the physical half-life is longer than induced half-life. Therefore, the storage period of radioactive waste for self-disposal may be curtailed in case of application of induced half-life. The result of this study will be proposed as ISO standard.

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.