• Title/Summary/Keyword: 티센

Search Result 47, Processing Time 0.033 seconds

Accuracy Comparison of According to Method of Rainfall Analysis and Development of Transform formula (강우분석 방법에 따른 정확도 비교·분석 및 변환식 개발)

  • Kang, Bo-Seong;Yang, Sung-Kee;Kim, Yong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.165-165
    • /
    • 2018
  • 이상기후로 인한 일강우량의 경신이 빈번하게 발생함에 따라 홍수피해 위험이 증가하고 있다. 최근 해안지대와 근접한 제주시와 서귀포시 도심부근에서 200 mm 이상의 일강우량이 빈번하게 발생하고 있으며, 한라산 정상 부근에서 500 mm 이상의 강우 발생빈도도 증가하고 있다. 특히, 2014년에 발생한 태풍 '나크리'는 기상청 관측 사상 최대인 1,500 mm의 일강우량을 기록하는 등 호우재해로 인한 피해 위험도가 증가하고 있다. 호우재해로 인한 홍수피해를 저감시키기 위해서는 정확한 홍수량 산정을 통한 계획수립이 매우 중요하다. 홍수량 산정 시 필수조건인 강우자료는 면적 개념의 면적평균 강우량이 필요하며 대표적 방법으로 티센다각형법이 있다. 티센다각형법은 현재 실무에서 가장 많이 사용되는 방법으로 쉽게 산정할 수 있으나 고도에 따른 강수 변화를 고려하지 못하는 단점이 있다. 이에 따라 제주도와 같은 산악지형에 적합한 방법을 고려하기 위하여 등우선법을 활용한 면적평균 강우량 산정 후 티센다각형법과 비교하였다. 티센다각형법은 관측소마다 관측된 강우량에 관측소 주위로 작도한 티센다각형의 면적 비를 가중치로 부여하는 방법으로 빠른 시간 안에 면적평균 강우량을 산정할 수 있는 반면, 등우선법은 등우선간 평균강우량에 등우선간 면적을 가중치로 부여하기 때문에 시간별 혹은 일별 등우선을 매번 작도해야 하는 점과 오랜 시간이 걸린다는 단점이 있다. 이에 따라 본 연구에서는 제주시 도심하천을 기준으로 티센다각형법과 등우선법 간 변환식을 개발하여 효율적인 면적평균 강우량 산정이 가능하도록 하였다.

  • PDF

Limitations of Estimating Watershed Areal Rainfall Using Point Gauge Rainfall (지점 강우량을 이용한 유역평균 강우량 산정의 한계)

  • Hwang, Seok Hwan;Yoon, Jung Soo;Kang, Na Rae;Noh, Hui Seong;Cho, Hyo Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.229-229
    • /
    • 2019
  • 본 연구에서는 현행 홍수예보에 활용되고 있는 지점 강우량의 면적강우량 산정 방법인 티센(Thiessen) 방법의 유역 평균 강우량 산정 시 발생하는 구조적 문제점을 검토하여 보았다. 현행지상 강수량계 기반의 면적평균강우량 산정 방법은 호우의 이동 방향에 따라 실제 강우량과 시차가 발생할 수 있는 구조적 문제점을 가지고 있다. 분석 결과 호우의 이동방향에 따른 강우의 시차발생이나 내삽 영역의 불확실성은 지점 강우량 관측의 한계로 티센방법 뿐만 아니라 지점 강우량을 사용하는 다른 내삽 방법에서도 정도의 차이는 있지만 유사하게 나타났다. 그러나 티센방법은 유역별 지점의 가중치(영향영역)가 고정되어 있기 때문에 이러한 현상이 심각하게 나타났다. 즉 현행 티센방법에 의한 지상 강우량의 면적평균 강우량 산정 방법은 시공간적으로 큰 바이어스를 초래가 가능하다. 크리깅 방법을 이용하면 시공간적 바이어스 감소하나 지점 관측의 한계를 완전하게 해소하는데는 미흡한 것으로 나타났다. 따라서 지점강우량 기반의 티센 유역평균 강수량 산정 체계에서 레이더 기반 유역평균 강우량 생산 활용 체계로 전환이 필요하다고 판단된다.

  • PDF

Improve Acuracy of Rardar Areal Rainfall using Artificial Neural Network (ANN을 이용한 Radar 면적강우량의 정확도 향상)

  • Kim, Young-Il;Choi, Gi-An;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.37-41
    • /
    • 2009
  • 본 연구에서는 티센망을 이용한 면적강우량 산정방법의 대안으로서 최근 들어 수자원공학 분야에의 활용성이 커지고 있는 고해상도 기상레이더의 반사도자료(dBZ)를 활용하여 면적강우량을 산정하였다. 또한 이렇게 산정된 레이더 면적강우량을 티센망으로써 산정된 면적강우량과 비교하여 그 유용성을 판단하였다. 연구지역으로는 소양강댐 유역을 선정하였으며, 연구기간은 2008년 가장 강한 강우를 보였던 상위 5개의 사상을 선정하였다. 본 연구에서는 레이더 반사도를 강우강도로 변환시키는 과정은 인공신경망(artificial neural network, ANN) 중에서 일반적으로 널리 사용되고 있는 다층 퍼셉트론 인공신경망 모형을 적용하였다. 연구방법으로는 선택된 4개의 인자를 입력노드에 넣어 인공신경망을 학습시킨 후 연구지역 내 10개 AWS 지상관측소의 강우량을 추정하여 정확도를 비교 분석하였다. 이를 바탕으로 최종적으로 레이더 면적강우량을 산정하여 기존의 티센망을 이용한 면적강우량과 그 값을 비교하였다. 그 결과 인공신경망을 이용한 레이더 강우량의 경우, 평균제곱오차(mean square error, MSE) 및 상관계수(correlation coefficient, CC)가 매우 양호한 값을 보였다. 또한 유역 내 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 약 $7%^{\sim}19%$ 정도 차이가 발생함을 확인하였으며, 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 더 정확한 면적강우량을 산정할 수 있다고 판단된다.

  • PDF

Comparative study on the areal rainfall in Jeju region according to the spatial interpolation scheme (강수의 공간보간 기법에 따른 제주 면적강수량 비교)

  • Um, Myung-Jin;Lee, Jeong-Eun;Jung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.931-931
    • /
    • 2012
  • 제주지역의 강수자료는 최근에 이르러 69개 지점으로 증가하여 비교적 밀도있는 강수관측이 진행되고 있다. 그러나 기존의 자료 증설 내역과 이설 등으로 인해 과거로부터 현재에 이르는 자료를 기반으로 면적강수량을 산정할 경우 다소 어려움이 있다. 본 연구에서는 1992년부터 2010년까지의 강수자료를 바탕으로 관측소 개수를 기반으로 기간을 구분하여 각 기간별로 공간보간기법별로 면적강수량을 산정하고 이를 비교하였다. 사용한 공간보간기법은 PRISM(Parameter-elevation Regressions on Independent Slopes Model)기법과 티센(Thiessen)법으로 19년간의 일강수량 자료를 바탕으로 각각 면적강수량을 산정했다. PRISM기법을 이용한 경우는 고도, 관측점으로부터의 거리, 방향성 분석 및 해안가중치를 고려하여 계산하였고, 티센법의 경우는 기간별로 상이한 티센망을 구축하여 산정하였다. 지점 관측강수량에서 고도가 증가할수록 강수량이 증가하는 제주형 산악효과가 나타났으며 이는 보간기법에 의한 결과에서도 동일하게 나타나는 것으로 확인되었다. 또한 고도에 따른 상관성은 PRISM기법에 의한 결과에서 더 높게 산정되는 것으로 나타났다. 기법별 산정된 면적강수량은 근소한 차이를 보였으며 PRISM기법에 의한 값이 티센법에 비해 약 1%정도 크게 계산되었다.

  • PDF

River Discharge Measurement and Analysis for The Main Branch Streams of Han-River Basin in 2008 (2008년 한강수계 주요지천 유량측정 및 유출특성 분석)

  • Gang, Gyu-Sang;Lee, Yeon-Kil;Lee, Jin-Won;Jung, Sung-Won;Han, Gi-Hak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1052-1056
    • /
    • 2009
  • 본 연구에서는 대상 지점의 강우량자료와 유출수문곡선으로 전 기간에 대한 유출률과 특정기간을 갖는 유출률을 각각 산정하여 유출특성을 분석하였다. 본 연구를 수행하기 위해서 GIS 소프트웨어인 ArcInfo와 ArcView 등으로 대상유역의 유역도, 강우관측망도, 수위관측망도, 수계망도,티센망도 등을 생성하여 대상유역의 수계 특성을 파악하였다. 개발된 곡선식의 적정성을 판단하기위해 상 하류 간의 유출특성 등을 비교 분석하였으며, 유역 내 댐이나 저수지가 존재할 경우 이를 고려하였다. 유출률 산정결과, 이호대교(남한강 본류) 지점에서의 유출률은 방류량을 고려하지 않았을 경우 59.8%, 고려했을 경우 74.5%로 산정되었다. 흑천의 원덕교 지점에서는 67.1%, 경안천의 경안교 지점에서는 78.3%, 홍천강의 성포교와 남산교 지점은 각각 63.3%, 53.1%로 산정되었다. 따라서 개발된 수위-유량관계곡선식은 적정한 것으로 판단되며, 이에 근거하여 유출수문곡선은 양질의 수준인 것으로 평가되었다.

  • PDF

Rainfall Analysis using Spatial Data Analysis Technique (공간분석기법에 의한 강우분석에 관한 연구)

  • Lee, Joon-Hak;Jung, Young-Hun;Oh, Kyoung-Doo;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1520-1524
    • /
    • 2010
  • 지상에 설치된 우량관측소를 통해서 자료가 수집되는 강우자료는 공간적으로 분포하고 있는 공간자료(spatial data)이며, 지점자료(point data)이다. 공간자료(spatial data)는 공간적으로 분포되지 않는 일반 데이터와는 다른 속성을 가지고 있으며 공간적인 위치가 데이터 발생의 중요한 변수로 적용될 수 있고, 인접 데이터와의 상관관계가 고려되어야 한다. 본 연구는 공간분석기법을 이용하여 보다 효과적인 강우분석을 하기 위한 것으로서, 우리나라 총 679개 우량관측소의 2008년 강우자료를 바탕으로 티센(Thiessen) 기법, IDW(Inverse Distance Weighted), 스플라인(Spline) 등과 공간통계학적 방법인 크리깅(Kriging)을 이용하여 주요 유역별 면적 강우량 산정 및 미계측 지역의 강우량 추정을 모의하였다. 본 연구결과 유역별 면적강우량 추정시 티센 및 경향면 분석법, Natural Neighbor 방법은 일부 과다 추정되는 것으로 나타났고, IDW, RBF, 크리깅의 방법은 큰 차이를 보이지 않았으나, 미계측 지역의 강우량 추정에는 일반크리깅의 정확도가 비교적 높은 것으로 나타났다.

  • PDF

Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method (지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석)

  • Hwang, Seokhwan;Kang, Narae;Yoon, Jung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1053-1064
    • /
    • 2022
  • The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.

Comparative Study on Estimation of Areal Average Rainfall in Nakdong River Basin (낙동강유역 면적평균강우량 산정 기법에 대한 비교 연구)

  • Lee, Yong-Shin;Na, Yu-Jin;Bang, Jun-Se
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.948-952
    • /
    • 2009
  • 면적평균강우량을 정확하게 추정하는 것은 수문조사 결과로 생성된 수위-유량관계곡선 검증을 위한 연간 유출율 및 유황분석 시에 매우 중요하다. 면적평균강우량을 산정하는 방법은 일반적으로 산술평균법, 티센법, 등우선법 등이 있는데, 최근 실무에서는 GIS Tool을 이용하여 티센다각형을 작도하고 가중치를 산정하여 관측소별 강우량을 유효강우량으로 변환하여 이용하거나, 평지 또는 좁은 유역의 경우 산술평균법을 적용하고 있다. 그러나 티센법은 지형적인 영향을 고려할 수없고, 산술평균법의 경우 우량계 밀도와 위치, 지형이 고려되지 못한다는 단점이 있기 때문에, 등우선법을 이용하여 면적평균강우량을 산정하는 것이 대부분 산악지역으로 이루어진 국내 현실에 가장 적합하다. 본 연구에서는 수문조사가 이루어지고 있는 낙동강 본류, 댐상류 등 13개 유역의 유역별 면적 평균강우량을 각각 산술평균법, 티센법, 등우선법을 이용하여 산정하였다. 등우선도의 작성을 위하여 관측소별 강우량을 역거리가중법(IDW), RBF, Kriging 기법을 이용하여 강우량의 공간보간을 실시하였으며, 등우선 간격의 영향을 검증하기 위하여 각 보간법 별 등우선 간격을 10mm, 50mm, 100mm로 분할하여 면적평균강우량을 산정하였다. 각 면적평균강우량 산정기법 및 등우선 간격별로 산정된 면적평균강우량을 비교하였고, 유역면적 등에 따른 면적평균강우량의 변화특성을 분석 하였다.

  • PDF

Analysis on Rainfall characteristics in Mountainous River Basin (산지 하천유역 강우특성 분석)

  • Park, Jung-Sool;Kim, Kyung-Tak;Choi, Cheon-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.886-886
    • /
    • 2012
  • 우리나라 하천의 대부분은 산지에서 발원하며 전 국토의 약 70%가 산지하천 유역에 포함된다. 최근 기후변화로 인해 여름철 집중호우가 증가하고 있는 상황에서 강우의 예측이 어렵고 경사가 급한 산지하천 유역의 피해가 가중되고 있으며 산지하천의 강우를 정량적으로 파악하고 상시 모니터링 할 수 있는 체계의 구축이 요구된다. 한국건설기술연구원(2011)에서는 산지 하천유역 모니터링 시스템을 구축하여 재해위험지역의 현장관측시스템과 레이더강우를 기반으로 하는 강우유출 시스템을 연계운영하고 있다. 본 연구에서는 하천유역 모니터링 시스템을 통해 수집되고 있는 강원도 인제군 가리산리의 관측강우량을 이용해 산지하천유역의 강우특성을 분석하고 산지유역의 강우추정을 위한 레이더 자료의 활용성을 제시하였다. 대상유역인 가리산천 유역을 대상으로 작성된 티센 면적평균 강우량과 기상레이더를 이용한 레이더 강우량에서 가리산리 관측시스템 위치의 픽셀을 추출한 후 각각의 방법으로 추정된 강우량이 관측값과 어떤 차이를 갖고 있는가를 비교하였다. 또한, 모니터링 사이트 주위의 AWS를 이용해 레이더 강우를 보정한 후 동일한 방법으로 관측강우 위치의 셀 강우를 비교하여 레이더 강우의 보정 효과를 제시하였다. 연구결과 600m 이상의 고지대에 위치한 현장관측시스템의 강우는 고도가 낮은 인근 강우관측소와 큰 차이를 나타냈으며 티센면적 평균 강우의 경우 산지하천의 강우특성을 반영하기에 한계가 있는 것으로 판단되었다. 레이더 강우 역시 실제 관측강우량에 비해 과소추정되며 대상유역 주변의 AWS를 이용해 보정한 레이더 보정강우를 활용시 현장관측시스템의 강우가 가장 유사한 결과가 도출되었다. 본 연구를 통해 산지하천 유역의 강우특성을 파악하기 위해서는 지상관측소와 레이더 자료를 병행하여 활용하는 것이 필요하며 산지하천유역의 강우를 효과적으로 모니터링 하기 위해서는 고도에 따른 관측망의 구성이 필요할 것으로 판단되었다.

  • PDF

Estimation of future climate change factor based on CMIP6 data (CMIP6 자료 기반 미래 기후변화 할증률 산정)

  • Beak, Dojin;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.308-308
    • /
    • 2023
  • 자연재해대책법 제 16조 6에 따라 기후변화로 인한 방재성능목표의 영향을 고려하기 위해 방재성능가이드라인을 설정하여 운영하고 있다. 2017년 공표된 기후변화를 고려한 방재성능목표 강우량의 단기 할증률은 CMIP5 자료를 기반으로 기본 5%, 관심 8%, 주의 10%의 할증률로 구분되어 적용되고 있다. 그러나, 미래 기후변화 시나리오에 따르면 확률강우량이 늘어나는 지역도 있지만, 감소될 것으로 예상되는 지역도 존재한다. 따라서, 모든 지역을 3개의 구간으로 나누어 증가 할증률을 적용하는 것에 대한 검토가 필요하다. 본 연구에서는 CMIP6 기후변화 자료를 시단위로 다운스케일링한 시계열을 이용하여 미래 기후변화로 인한 방재성능목표의 할증률을 산정하고, 각 할증률에 기반한 구간을 상세화하고자 한다. 구체적으로, 현재 기상청에서 제공하는 일단위 기후변화 데이터베이스와, CMIP6에서 제공하는 일단위 기후변화 자료를 구축하고, 분석하였다. 이후 구축된 일단위 자료를 시단위 자료로 Downscaling한 후, 각 이산화탄소 배출 시나리오인 SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 대해 앙상블 시계열을 생성하고, 다양한 기후변화의 불확실성을 적절하게 정량화 할 예정이다. 그중에서 방재성능목표와 가장 밀접하다고 생각되는 변수들(연강우량, 8월강우량, 연최대강우량, 30년빈도 확률강우량 등)을 CCF(Cross Correlation Function), ACC(Auto Correlation Function)방법 등을 통해 분석하여 최적의 변수들을 찾고, 그 값들의 앙상블 평균을 통해 안정된 방재성능목표 기후변화 할증률 값을 산정할 예정이다. 169개 지역의 시·군 단위의 티센망과, 238개 지역의 시·군·구 단위의 티센망을 구축하고, 기상청 ASOS(Automated Synoptic Observing System)의 69개 기상관측소 강우관측자료와 AWS(Automatic Weather System)의 419개 기상관측소를 활용하여 지역별 미래 기후변화를 고려한 비선형적 할증률를 제시할 것이다.

  • PDF