• Title/Summary/Keyword: 특징 집합 선택

Search Result 112, Processing Time 0.031 seconds

Improved methods for assessing single paper's citation impact (단일 문헌의 인용 영향력 측정 방식의 개선)

  • Lee, Jae Yun
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2011.08a
    • /
    • pp.29-34
    • /
    • 2011
  • 최근 인용 네트워크 분석을 통해서 단일 문헌의 인용 영향력을 측정하려는 시도가 다양하게 전개되고 있다. 널리 알려진 PageRank를 보완하려는 일부 시도와 함께 h-index를 단일 문헌의 인용 영향력 측정에 적용한 단일문헌 h-index도 제안되었다. 이 연구에서는 Web of Science에서 검색한 계량정보학 분야 문헌집합을 대상으로 여러 측정 방식의 특징을 비교해본 후, 새로운 인용지수 2종을 제안하였다. 제안한 인용지수는 PageRank처럼 전역 네트워크 분석 방식인 지수 1종과 h-index처럼 지역 네트워크 분석 방식인 지수 1종으로서 상황에 따라 선택하여 사용할 수 있다.

  • PDF

An In-depth Analysis on Traffic Flooding Attacks Detection using Association Rule Mining (연관관계규칙을 이용한 트래픽 폭주 공격 탐지의 심층 분석)

  • Jaehak Yu;Bongsu Kang;Hansung Lee;Jun-Sang Park;Myung-Sup Kim;Daihee Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1563-1566
    • /
    • 2008
  • 본 논문에서는 데이터의 전처리과정으로 SNMP MIB 데이터에 대한 속성 부분집합의 선택 방법(attribute subset selection)을 사용하여 특징선택 및 축소(feature selection & reduction)를 실시하였다. 또한 데이터 마이닝의 대표적인 해석학적 분석 모델인 연관관계규칙기법(association rule mining)을 이용하여 트래픽 폭주 공격 및 공격유형별 SNMP MIB 데이터에 내재되어 있는 특징들을 규칙의 형태로 추출하여 분석하는 의미론적 심층해석을 실시하였다. 공격유형에 대한 패턴 규칙의 추출 및 분석은 공격이 발생한 프로토콜에 대해서만 서비스를 제한하고 관리할 수 있는 정책적 근거를 제공함으로써 보다 안정적인 네트워크 환경과 원활한 자원관리를 지원할 수 있다. 본 논문에서 제시한 트래픽 폭주 공격 및 공격유형별 데이터로부터의 자동적 특징의 규칙 추출 및 의미론적 해석방법은 침입탐지 시스템을 위한 새로운 방법론에 모멘텀을 제시할 수 있다는 긍정적인 가능성과 함께 침입탐지 및 대응시스템의 정책 수립을 지원할 수 있을 것으로 기대된다.

Extraction of Classes and Inheritance from Procedural Software (절차지향 소프트웨어로부터 클래스와 상속성 추출)

  • Choi, Jeong-Ran;Lee, Chol;Lee, Yun-Sik;Lee, Moon-Kun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.592-594
    • /
    • 2001
  • 본 논문은 절차지향 소프트웨어로부터 클래스와 상속성을 추출하기 위한 방법론을 제안한다. 본 논문에서 제안한 방법론은 모든 경우의 클래스 후보군과 그들의 상속성을 생성하여 클래스 후보군과 영역 모델 사이의 관계성과 유사 정도를 가지고 최고 또는 최적의 클래스 후보군을 선택하는데 초점을 둔다. 클래스와 상속성 추출 방법론은 다음과 같은 두드러진 특징을 가지고 있다: 정적(속성)과 동적(메소드)인 클러스터링 방법을 사용하고, 클래스 후보군의 경우는 추상화에 초점을 두며, m개의 클래스 후보와 n개의 클래스 후보 사이의 상속 관계의 유사도 측정 즉, 2차원적 유사도 측정은 m개의 클래스 후보와 n개의 클래스 후보 사이의 전체 그룹에 대한 유사도를 구하는 수평적 측정과 클래스 후보군들에서 상속성을 가진 클래스의 집합과 영역 모델에서 같은 클래스 상송성을 가진 클래스 집합사이의 유사도를 위한 수직적 측정방법이 있다. 이러한 방법론은 최고 또는 최적의 클래스 후보군을 선택하기 위해 제공학 전문가에게 광범위하고 통합적인 환경을 제시하고 있다.

  • PDF

Real-Time Visual Grounding for Natural Language Instructions with Deep Neural Network (심층 신경망을 이용한 자연어 지시의 실시간 시각적 접지)

  • Hwang, Jisu;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.487-490
    • /
    • 2019
  • 시각과 언어 기반의 이동(VLN)은 3차원 실내 환경에서 실시간 입력 영상과 자연어 지시들을 이해함으로써, 에이전트 스스로 목적지까지 이동해야 하는 인공지능 문제이다. 이 문제는 에이전트의 영상 및 자연어 이해 능력뿐만 아니라, 상황 추론과 행동 계획 능력도 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각과 언어 기반의 이동(VLN) 작업을 위한 새로운 심층 신경망 모델을 제안한다. 제안모델에서는 입력 영상에서 합성곱 신경망을 통해 추출하는 시각적 특징과 자연어 지시에서 순환 신경망을 통해 추출하는 언어적 특징 외에, 자연어 지시에서 언급하는 장소와 랜드마크 물체들을 영상에서 별도로 탐지해내고 이들을 추가적으로 행동 선택을 위한 특징들로 이용한다. 다양한 3차원 실내 환경들을 제공하는 Matterport3D 시뮬레이터와 Room-to-Room(R2R) 벤치마크 데이터 집합을 이용한 실험들을 통해, 본 논문에서 제안하는 모델의 높은 성능과 효과를 확인할 수 있었다.

Fast Viola-Jones Object Detector using Fast Rejection and High Efficient Feature Selection (빠른 리젝션과 고효율 특징선택을 이용한 빠른 Viola-Jones 물체 검출기)

  • Park, Byeong-Ju;Lee, Jae-Heung;Lee, Gwang-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1343-1346
    • /
    • 2013
  • 본 연구에서는 기존의 Viola-Jones 물체 검출 프레임워크를 개선하여 하나의 특징 당 더 높은 효율을 가지며 검출대상이 아닌 서브 윈도우들을 더 빠르게 제거하는 학습 알고리즘을 제안한다. 학습의 결과로 생성된 물체 검출기는 서브윈도우를 특정 임계값까지 빠르게 제거하기 때문에 서브윈도우당 계산수가 줄어든다. 기존의 Viola-Jones 물체 검출기와 동일한 프레임워크이므로 인식성능에는 영향을 주지 않는다. MIT-CMU 테스트 집합에 대해서 서브윈도우당 특징 계산 횟수를 측정하였으며 기존 계산 횟수의 57%로 줄어들어 검출 속도가 약 71% 향상됨을 확인하였다.

Feature Selection for Accurate Sign Prediction in Social Networks (소셜 네트워크에서 정확한 부호 예측을 위한 특징 선택)

  • Kim, Byung Chan;Choi, Beom Seok;Lee, Won-Chang;Lee, Yeon-Chang;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.755-756
    • /
    • 2020
  • 부호가 있는 소셜 네트워크는 친구, 호감, 동의의 긍정적인 관계와 적, 불호, 반대의 부정적인 관계가 함께 표현된 네트워크이다. 이러한 네트워크를 활용한 대표적인 애플리케이션으로, 각 사용자의 관계가 긍정적인 관계인지 부정적인 관계인지 예측하는 부호 예측 문제가 있다. 이러한 부호 예측 문제를 해결하는 대표적인 방안은 네트워크의 구조적 특징들을 활용하는 것이다. 본 논문에서는, 실세계 데이터 집합들을 활용한 실험을 통해 기존 부호 예측 방법들에서 활용하는 각 특징이 부호 예측 문제의 정확도에 얼마나 기여하는지 분석하고자 한다.

A Comparison of Machine Learning Techniques for Evaluating the Quality of Blog Posts (블로그 포스트 자동 품질 평가를 위한 기계학습 기법 비교 연구)

  • Han, Bum-Jun;Kim, Min-Jeong;Lee, Hyoung-Gyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.385-388
    • /
    • 2010
  • 블로그는 다양한 주제 분야에 대한 내용을 자유롭게 표현할 수 있는 일종의 개인 웹사이트로, 많은 양과 다양성으로 매우 중요한 정보원이 될 수 있다. 블로그는 생산속도가 매우 빠르므로 보다 고품질의 블로그를 선별하는 것이 중요하다. 본 논문에서는 블로그의 본문을 담고 있는 포스트를 대상으로 기계학습 기법을 이용하여 문서의 품질을 자동으로 평가하고자 하였다. 학습을 위한 자질로는 모든 블로그에 공통적으로 적용할 수 있도록 형태소 분석에서 추출한 동사, 부사, 형용사의 내용어만을 선택하였다. 성능 비교를 위해 수작업으로 약 4,600개의 정답 집합을 구축하고, 적합한 기계학습 기법을 찾기 위해 다양한 학습 기법을 사용하여 비교 실험하였다. 실험 결과 Bagging 기법의 성능이 79% F-measure로 가장 좋음을 보여주었다. 한정된 자질을 사용했을 때와 정답 집합의 문서 수 비율이 불균등할 경우 단순함, 유연성, 효율성의 특징을 지닌 Bagging 기법이 적합할 것으로 보인다.

Enhancing Document Clustering Method using Synonym of Cluster Topic and Similarity (군집 주제의 유의어와 유사도를 이용한 문서군집 향상 방법)

  • Park, Sun;Kim, Kyung-Jun;Lee, Jin-Seok;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.30-38
    • /
    • 2011
  • This paper proposes a new enhancing document clustering method using a synonym of cluster topic and the similarity. The proposed method can well represent the inherent structure of document cluster set by means of selecting terms of cluster topic based on the semantic features by NMF. It can solve the problem of "bags of words" by using of expanding the terms of cluster topics which uses the synonyms of WordNet. Also, it can improve the quality of document clustering which uses the cosine similarity between the expanded cluster topic terms and document set to well cluster document with respect to the appropriation cluster. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

An investigation of chroma n-gram selection for cover song search (커버곡 검색을 위한 크로마 n-gram 선택에 관한 연구)

  • Seo, Jin Soo;Kim, Junghyun;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.436-441
    • /
    • 2017
  • Computing music similarity is indispensable in constructing music retrieval system. This paper focuses on the cover song search among various music-retrieval tasks. We investigate the cover song search method based on the chroma n-gram to reduce storage for feature DB and enhance search accuracy. Specifically we propose t-tab n-gram, n-gram selection method, and n-gram set comparison method. Experiments on the widely used music dataset confirmed that the proposed method improves cover song search accuracy as well as reduces feature storage.

An Improvement of FSDD for Evaluating Multi-Dimensional Data (다차원 데이터 평가가 가능한 개선된 FSDD 연구)

  • Oh, Se-jong
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.247-253
    • /
    • 2017
  • Feature selection or variable selection is a data mining scheme for selecting highly relevant features with target concept from high dimensional data. It decreases dimensionality of data, and makes it easy to analyze clusters or classification. A feature selection scheme requires an evaluation function. Most of current evaluation functions are based on statistics or information theory, and they can evaluate only for single feature (one-dimensional data). However, features have interactions between them, and require evaluation function for multi-dimensional data for efficient feature selection. In this study, we propose modification of FSDD evaluation function for utilizing evaluation of multiple features using extended distance function. Original FSDD is just possible for single feature evaluation. Proposed approach may be expected to be applied on other single feature evaluation method.