• 제목/요약/키워드: 특징 인식

검색결과 4,523건 처리시간 0.032초

숫자음 인식을 위한 K-L 동적 특징파라미터의 확장 (Extension of K-L Dynamic Parameter for Connected Digit Recognition)

  • 김주곤
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.257-261
    • /
    • 1998
  • 일반적으로 인식률이 저조한 연속 숫자음의 인식 정도 향상을 위해서 K-L 동적특징의 확장에 대해서 검토한다. 이 검토결과를 4연속 숫자음을 대상으로 하는 인식 실험을 수행하여 숫자음 인식에 있어서 확장된 K-L 동적특징의 유효성을 확인하고자 한다. 이를 위하여 음성자료는 국어공학센터에서 채록한 4연속 숫자음을 사용하며, 확장한 K-L 동적특징의 유효성을 확인하기 위해서는 단일 특징 파라미터로서 멜-켑스트럼과 회귀계수, K-L 동적계수 등과 이들 특징 파라미터를 결합한 경우에 대해서 특징파라미터를 확장하여 K-L 동적 특징을 추출하고, 4연속 숫자음인식 실험을 수행하였다. 이때 인식의 기본 단위로는 48개의 유사음소단위를 음소모델로 사용하였으며, 인식실험에 있어서는 유한 상태 오토마타에 의한 구문제어를 통한 OPDP 법을 이용하였다. 인식 실험 결과, 단일 특징파라미터로서 멜-켑스트럼을 사용한 경우 67.5%, 이를 확장한 K-L 동적계수를 사용한 경우 78.2%를 보였다. 또한 결합한 특징파라미터에 있어서는 멜-켑스트럼과 희귀계수를 사용한 경우 78.4%의 인식률을 보였으며, 이를 K-L 동적계수로 확장한 경우 82.3%의 인식률을 얻어 확장한 K-L 동적특징파라미터의 유효성을 확인하였다.

  • PDF

도시 영상에서의 Inlier 선택과 Database Redundancy 감소 기법 (Inlier selection and Database Redundancy Reducing Method in Urban Environment)

  • 안하은;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.29-32
    • /
    • 2016
  • 특징점 기반 건물인식 시스템에서는 강건한 특징점을 추출하는 것이 인식률 향상에 바로 직결되는 중요한 요소이다. 영상에서 특징점들이 너무 많이 추출되는 경우 인식이나 학습단계에서의 알고리즘 수행 시간을 증가시키는 원인이 된다. 또환 중요하지 않은 특징점(배경이나 가려짐 영역, 기타 객체에서 추출된 특징점)이나 조명 변화에 민감한 영역에서 임의로(arbitrarily) 추출된 특징점은 인식률을 저하시키는 문제를 발생시킨다. 특히 도시환경에서 촬영된 영상의 특징점을 추출할 때 이러한 문제 현상들이 빈번하게 발생한다. 본 논문에서는 이러한 문제를 해결하고자 multi-view 영상에서 건물의 homography를 기반으로 정확히 정합된 특징점인 inlier만을 선택하는 알고리즘을 제안한다. Inlier로 분류된 특징점들은 건물 인식 시스템을 구성하기 위해 사용되고 조명 변화에 민감한 영역에서 임의로 추출된 특징점들은 영역 기반 특징을 추출하여 건물 인식 시스템의 인식률을 높인다. 또한 이를 이용하여 인식하고자 하는 건물과의 상관관계가 적은 잉여 영상들을 DB에서 제거하는 방법도 제안한다. 실험을 통하여 제안하는 기법의 우수성을 보였다.

  • PDF

분절 화소들의 특징을 이용한 필기체 숫자인식 (Handwritten Numeral Recognition using the Features of Segmented Pixels)

  • 최용호;조범준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.661-663
    • /
    • 2002
  • 필기체 숫자 인식을 위한 새로운 특징 추출방범을 숫자의 기하학적인 구조들을 이용하여 연구 제안하였다. 일반적으로 쓰이고 있는 특징점들의 몇가지 부류를 결정하여 추줄하였고, 분절 화소들을 이용한 특징 추출기는 사소한 부분들을 명확한 특징으로 탐지하여 추줄하게 된다. 신경망은 새로운 접근 가능성을 탐지하는 실험 인식기로 사용하였고, 이러한 방법들을 이용하여, 일반적인 특징점 추줄방법과 본 연구에서 제안하는 특징점 추출방법을 결합하게 되면 필기체 문자의 인식률이 단순히 일반적인 특징만을 활용하여 얻는 인식률 보다 훨씬 향상됨을 보여주었다.

  • PDF

단어인식을 위한 음소의 동적 특징에 관한 검토 (A Study on the Dynamic Feature of Phoneme for Word Recognition)

  • 김주곤
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.35-39
    • /
    • 1997
  • 본 연구에서는 음소를 인식의 기본단위로 하는 한국어 단어인식 시스템의 인식정도를 개선하기 이해 각 음소의 시간방향의 정보를 포함하고 있는 동적특징인 회귀계수와 K-L(Karhunen-Loeve)변환으로 얻은 특징파라미터(이하 K-L계수라 함)를 이용하여 음소인식과 단어인식 실험을 수행한 결과 그 유효성을 확인하였다. 이를 위해 먼저 파열음을 대상으로 정적 특징과 파라미터인 멜-켑스트럼(Mel-Cepstrum)과 동적 특징 파라미터인 회귀계수(Regressive Coefficient) 와 K-L 계수(Karhunen-Loeve Coefficient)를 추출하여 음소 인식실험을 수행하였다. 그 결과 멜-켑스트럼을 사용한 경우 39.84%, 회귀계수를 사용한 경우 48.52%, K-L계수를 사용한 경우 52.40%의 인식률을 얻었다. 이를 참고로 각각의 특징 파라미터를 결합하여 인식실험한 결과 멜-켑스트럼과 K-L계수를 사용한 경우 47.17%,멜 -켑스트럼과 회귀계수의 경우 60.11%,K-L계수와 회귀계수의 경우 60.35%, 멜-켑스트럼과 K-L계수 , 회귀계수를 사용한 경우 58.13%를 인식률을 얻어 동적특징인 K-L 계수와 회귀계수를 사용한 경우와 멜-켑스트럼과 회귀계수를 사용한 경우가 높은 인식률을 보였으며 이를 단어로 확장하여 인식실험을 수행한 결과 기존의 특징 파라미터를 이용한 경우보다 높은 인식률을 얻어 동적 파라미터의 유효성을 확인하였다

  • PDF

3 차원 수용영역 구조의 CNN 모델을 이용한 동적 수신호 인식 기법 (Dynamic Hand Gesture Recognition Using a CNN Model with 3D Receptive Fields)

  • 박진희;이조셉;김호준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.459-462
    • /
    • 2007
  • 본 연구에서는 동적 수신호 인식문제를 위하여 CNN 모델을 사용한 특징추출 기법과, FMM 신경망을 사용한 특징 분석 기법을 상호 결합한 형태의 패턴 인식 모델을 제안한다. 수신호 인식을 위하여 영상패턴에서 대상물의 움직임 정보에 기초한 3 차원 형식의 데이터 표현 기법과, 이로부터 인식을 위한 특징추출 기법을 제시한다. 특징추출 모듈에서는 3 차원으로 확장된 구조의 수용영역을 고려한 CNN 모델을 제안하며, 이로부터 학습패턴에서 특징점의 공간적 변이에 대한 영향을 최소화할 수 있음을 고찰한다. 또한 인식효율의 개선을 위하여 방대한 양의 특징집합으로부터 효과적인 특징을 선별하기 위한 방법론으로서 WFMM 모델 기반의 특징분석 기법을 정의하고 이로부터 선별된 특징을 사용하는 인식 기법을 소개한다.

음성인식에 있어서 특징 파라미터의 기여도에 기반한 상태별 특징 파라미터 가중 (State-Dependent Feature-Parameter Weighting By the Contribition of the feature parameter to the performance of the Speech Recongition)

  • 최환진
    • 한국음향학회지
    • /
    • 제17권1호
    • /
    • pp.39-48
    • /
    • 1998
  • 본 논문에서는 은닉 마르코프 모델에 기반한 음성인식에 있어서 특징 파라미터의 인식 성능에 미치는 영향의 차이를 인식 시스템에 반영하여 인식성능을 향상시키기 위한 방 법을 제안하였다. 특징 파라미터별 가중치를 유도하기 위해서 우선 상태별 특징 파라미터의 인식율에 대한 기여도를 가중치로 변환하고, 이를 특징 파라미터 각각의 상태에서의 출력확 률에 곱하여 상태별 출력확률을 재 추정하게 된다. 실험결과, "가변가중"방법이 "고정가중" 방법에 비해서 단어 인식의 경우 3.3%, 그리고 문장 인식율의 경우 5.3%의 성능향상을 보 임으로써 상태별 특징 파라미터의 가중이 인식 성능 향상에 유효함을 알 수 있었다.

  • PDF

오프라인 필기체 숫자인식을 위한 특징 비교 및 다수결 투표를 사용한 성능향상 방안 (Performance Comparison of Various Features for Off-line Handwritten Numerals Recognition and Suggestion for Improving Recognition rate for Using Majority Voting)

  • 권영일;하진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.595-597
    • /
    • 2003
  • 오프라인 필기체 숫자 인식에서 다양한 변형을 잘 흡수 할 수 있는 효율적인 특징을 찾는 것은 중요한 일이며, 본 논문에서는 이를 위해 다양한 단일특징들을 구현 하였으며, 단일 특징만으로는 만족 할 만한 성능을 기대하기 어렵기 때문에 다양한 단일 특징을 복합특징으로 구성하였다. 또한 오프라인 필기체 숫자인식에서 좋은 성능을 발휘하는 것으로 알려진 신경회로망으로 학습을 하였으며, 인식의 성능을 개선시키기 위해 효과적인 특징을 조합하여 하나의 단일 신경회로망들을 구성하고 그것을 다시 복합신경회로망으로 구성하여 성능을 실험 함으로서 성능의 향상을 볼 수 있었고, 신경회로망에 더하여 성능을 개선시키기 위해 신경회로망을 보완 할 수 있는 다수결 투표 방법을 사용하였다. 본 논문에서는 신경회로망의 인식 결과를 비교 분석하여 최적의 특징을 찾아 낸 결과를 2차 다수결 투표를 사용하여 인식하는 방법을 제안한다. 제안된 방식의 성능을 검증하기 위해서 Concorida 대학교의 CENPARIMI 숫자 데이터 베이스를 가지고 인식을 수행 하였으며. 그 결과 97.40%의 정인식률과 0.75%의 오인식률 그리고 1.85%의 거부률을 보였다.

  • PDF

아이겐포인트를 이용한 표정 인식 (Facial expression recognition using eigen-points)

  • 홍성희;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.817-819
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴표정을 구분하기 위해서 무표정 영상으로부터 18개의 특징점을 찾고, 그 특징점 간의 거리를 템플릿으로 이용하는 방법을 연구하였다. 얼굴표정인식을 위해 정의된 기본 템플릿과 입력 표정 영상에서의 특징정 간의 상대적인 거리의 차이와 특징점의 좌표변위 차이를 이용하여 표정을 구분하도록 하였다. 각 테스트 표정영상의 특징점은 주요 얼굴요소로부터 아이겐포인트(eigen-point)를 자동으로 추출하였다. 표정 인식은 신경망 학습을 통해서 기쁨, 경멸, 놀람, 공포 슬픔 등 5가지로 나누어 실험하였고, 신경망의 인식 결과와 사람의 인식 결과를 통해서 비교한 결과, 72%의 인식성능을 보여주었다.

  • PDF

영상 개선을 통한 지문인식 특징점 추출

  • 안효창;심명환;한태규;이상범;김영섭
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.165-169
    • /
    • 2005
  • 지문인식에 있어서 지문의 원 영상이 여러 가지 이유로 손상되어 발생 될 수 있는 특징 및 정보들이 지문인식 시스템에 많은 영향을 주어 인식률이 낮아지게 된다. 본 논문에서는 개선된 영상처리를 통하여 이러한 의사 특징점의 수를 줄여 보다 정확한 특징점을 추출하여 지문인식 시스템의 성능을 향상시키는 알고리즘을 제안하고자 한다. 지문의 손상으로 생기는 의사 특징점을 줄임으로써 전체 시스템의 계산량을 줄여 지문인식 속도를 향상시키고자 한다.

  • PDF

곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출 (Feature Extraction Using Trace Transform for Insect footprint Recognition)

  • 신복숙;차의영;조경원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.313-316
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, 인식의 기본 단위인 세그먼트를 자동 추출하는 기법과 Trace transform을 이용하여 발자국 인식에 필요한 특징을 추출하는 기법을 제안하였다. Trace transform 방법을 이용하면 패턴의 크기, 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 특징값을 도출하기 위한 첫 번째 단계로는 추출된 세그먼트에 대한 Trace transform을 통해 새로운 Trace 이미지를 생성시킨다. 그런 다음 병렬로 표현되는 trace-line을 따라 특성 함수에 의해 특징들이 일차적으로 도출되고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 2가지 서로 다른 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 크기, 이동, 회전, 반사에 관계없이 인식에 적합한 특징값들이 추출됨을 확인할 수 있었다.

  • PDF