• Title/Summary/Keyword: 특징 맵 기반

Search Result 143, Processing Time 0.026 seconds

Non-Photorealistic Rendering Using CUDA-Based Image Segmentation (CUDA 기반 영상 분할을 사용한 비사실적 렌더링)

  • Yoon, Hyun-Cheol;Park, Jong-Seung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.529-536
    • /
    • 2015
  • When rendering both three-dimensional objects and photo images together, the non-photorealistic rendering results are in visual discord since the two contents have their own independent color distributions. This paper proposes a non-photorealistic rendering technique which renders both three-dimensional objects and photo images such as cartoons and sketches. The proposed technique computes the color distribution property of the photo images and reduces the number of colors of both photo images and 3D objects. NPR is performed based on the reduced colormaps and edge features. To enhance the natural scene presentation, the image region segmentation process is preferred when extracting and applying colormaps. However, the image segmentation technique needs a lot of computational operations. It takes a long time for non-photorealistic rendering for large size frames. To speed up the time-consuming segmentation procedure, we use GPGPU for the parallel computing using the GPU. As a result, we significantly improve the execution speed of the algorithm.

Ontology based Retrieval System for Shopping Sites Customer (온톨로지 기반의 쇼핑 사이트 고객을 위한 검색 시스템)

  • Gu Mi-Sug;Hwang Jeong-Hee;Ryu Keun-Ho
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.51-54
    • /
    • 2004
  • 시멘틱 웹은 기존의 웹과는 달리 정보의 의미가 정의되고, 이들 간의 의미적 연결을 지원한다는 특징이 있어서, 최근 차세대 웹으로 부각되고 있다. 이러한 의미적 연결을 위해서 시맨틱 웹의 기반인 온톨로지가 필요하다. 온톨로지는 리소스에 대한 메타데이터를 정의하여 의미적 연결이 가능하게 하므로 효율적인 정보 검색이 가능하다. 이 논문에서는 정보 검색의 효율을 증가시키기 위해서 시맨틱 웹의 핵심인 온톨로지 기반의 정보 검색 시스템을 제안한다. 쇼핑 사이트에서 효율적인 마케팅을 위해 사용자의 구매 패턴을 조사하여 고객에게 알맞은 정보 추천을 하기 위한 것을 목적으로 한다. 온톨로지의 구축은 XTM을 기반으로 토픽맵을 이용하였다. 그리고 온톨로지를 기반으로, 사용자의 구매패턴을 찾아서 정확한 정보 전달을 위해서 데이터 마이닝 기법을 이용하였다. 빈발패턴 트리 기법을 기반으로 하는 멀티 레벨 멀티 디멘션 빈발 패턴 마이닝 알고리즘을 이용하여 사용자 패턴을 분석하여 정보 검색에 효율을 기하였다.

  • PDF

자율운항시스템 형식인증 개발을 위한 디지털트윈 기술 동향 분석

  • 김거화;곽연민;장화섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.223-224
    • /
    • 2023
  • 국제해사기구에서는 2024년 초안을 개발하고 25년 승인하기 위한 로드맵을 수립하였고 이를 기반으로 자율운항선박 운항을 위한 MASS Code 개발에 착수하였다. 2025년 승인 이후부터 2028년 발효까지 선급에서는 MASS 코드에 부합하는 규정을 개발해야 한다. 기존 GBS는 기존에 운용되어온 시스템을 대상으로 개발되었으나 MASS Code는 아직 경험해 보지 않은 선박을 대상으로 하기 때문에 합의에 이르는 과정이 순탄하지 않을 것으로 보인다. 따라서, 우선 자율시스템이 적용가능한 시스템을 분석하고 공통적으로 갖는 구조적인 특징을 분석하는 것이 필요하다.

  • PDF

A Method of Eye and Lip Region Detection using Faster R-CNN in Face Image (초고속 R-CNN을 이용한 얼굴영상에서 눈 및 입술영역 검출방법)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.1-8
    • /
    • 2018
  • In the field of biometric security such as face and iris recognition, it is essential to extract facial features such as eyes and lips. In this paper, we have studied a method of detecting eye and lip region in face image using faster R-CNN. The faster R-CNN is an object detection method using deep running and is well known to have superior performance compared to the conventional feature-based method. In this paper, feature maps are extracted by applying convolution, linear rectification process, and max pooling process to facial images in order. The RPN(region proposal network) is learned using the feature map to detect the region proposal. Then, eye and lip detector are learned by using the region proposal and feature map. In order to examine the performance of the proposed method, we experimented with 800 face images of Korean men and women. We used 480 images for the learning phase and 320 images for the test one. Computer simulation showed that the average precision of eye and lip region detection for 50 epoch cases is 97.7% and 91.0%, respectively.

Distracted Driver Detection and Characteristic Area Localization by Combining CAM-Based Hierarchical and Horizontal Classification Models (CAM 기반의 계층적 및 수평적 분류 모델을 결합한 운전자 부주의 검출 및 특징 영역 지역화)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.439-448
    • /
    • 2021
  • Driver negligence accounts for the largest proportion of the causes of traffic accidents, and research to detect them is continuously being conducted. This paper proposes a method to accurately detect a distracted driver and localize the most characteristic parts of the driver. The proposed method hierarchically constructs a CNN basic model that classifies 10 classes based on CAM in order to detect driver distration and 4 subclass models for detailed classification of classes having a confusing or common feature area in this model. The classification result output from each model can be considered as a new feature indicating the degree of matching with the CNN feature maps, and the accuracy of classification is improved by horizontally combining and learning them. In addition, by combining the heat map results reflecting the classification results of the basic and detailed classification models, the characteristic areas of attention in the image are found. The proposed method obtained an accuracy of 95.14% in an experiment using the State Farm data set, which is 2.94% higher than the 92.2%, which is the highest accuracy among the results using this data set. Also, it was confirmed by the experiment that more meaningful and accurate attention areas were found than the results of the attention area found when only the basic model was used.

Smart Social Grid System using Interactive Sketch Map (인터랙티브 스케치맵을 활용한 스마트 소셜 그리드 시스템)

  • Kim, Jung-Sook;Lee, Hee-Young;Lee, Ya-Ree;Kim, Bo-Won
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.388-397
    • /
    • 2012
  • Recently, one of the received attraction fields in web based service is 'Human Relationship Service' that is called SNS. This relationship map service is able to deliver information to user more easily and visually because it is intuitive data that is linked with offline real world. While past map service put physical real information in the map, present map service is evolving into new communicative platform that expresses social relationship beyond simple search platform that shows real world. In this paper, we propose smart social grid system using sketch map that is based on online map service structure. This system has features such as standardized interface provision for various SNS, use to governance hub tool in case of establishing a personal network through expanded social grid, a role of bridge to mashup software linked with other SNS, user environment construction that reproduces social grid data, and the faster service setup by improved search technology.

Real-Time Image-Based Relighting for Tangible Video Teleconference (실감화상통신을 위한 실시간 재조명 기술)

  • Ryu, Sae-Woon;Parka, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.807-810
    • /
    • 2009
  • This paper deals with a real-time image based relighting system for tangible video teleconference. The proposed image based relighting system renders the extracted human object using the virtual environmental images. The proposed system can homogenize virtually the lighting environments of remote users on the video teleconference, or render the humans like they are in the virtual places. To realize the video teleconference, the paper obtains the 3D object models of users in real-time using the controlled lighting system. In this paper, we use single color camera and synchronized two directional flash lights. Proposed system generates pure shading images using on and off flash images subtraction. One pure shading reflectance map generates a directional normal map from multiplication of each reflectance map and basic normal vector map. Each directional basic normal map is generated by inner vector calculation of incident light vector and camera viewing vector. And the basic normal vector means a basis component of real surface normal vector. The proposed system enables the users to immerse video teleconference just as they are in the virtual environments.

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF

Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis (손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구)

  • Han, Hyun-Ho;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • In this paper, we propose a method to analyze the loss region of the dictionary-based super resolution result learned for image quality improvement and to map the learning data according to the analyzed loss region. In the conventional learned dictionary-based method, a result different from the feature configuration of the input image may be generated according to the learning image, and an unintended artifact may occur. The proposed method estimate loss information of low resolution images by analyzing the reconstructed contents to reduce inconsistent feature composition and unintended artifacts in the example-based super resolution process. By mapping the training data according to the final interpolation feature map, which improves the noise and pixel imbalance of the estimated loss information using a Gaussian-based kernel, it generates super resolution with improved noise, artifacts, and staircase compared to the existing super resolution. For the evaluation, the results of the existing super resolution generation algorithms and the proposed method are compared with the high-definition image, which is 4% better in the PSNR (Peak Signal to Noise Ratio) and 3% in the SSIM (Structural SIMilarity Index).

Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization (딥 러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크)

  • Joo, Heeyoung;Ko, Min-Soo;Song, Hyok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.748-757
    • /
    • 2021
  • In this paper, we propose a gaze estimation network in which eye landmark position detection and gaze direction vector estimation are integrated into one deep learning network. The proposed network uses the Stacked Hourglass Network as a backbone structure and is largely composed of three parts: a landmark detector, a feature map extractor, and a gaze direction estimator. The landmark detector estimates the coordinates of 50 eye landmarks, and the feature map extractor generates a feature map of the eye image for estimating the gaze direction. And the gaze direction estimator estimates the final gaze direction vector by combining each output result. The proposed network was trained using virtual synthetic eye images and landmark coordinate data generated through the UnityEyes dataset, and the MPIIGaze dataset consisting of real human eye images was used for performance evaluation. Through the experiment, the gaze estimation error showed a performance of 3.9, and the estimation speed of the network was 42 FPS (Frames per second).